当前位置: X-MOL 学术Rev. Mod. Phys. › 论文详情
Colloquium: Atomic spin chains on surfaces
Reviews of Modern Physics ( IF 45.037 ) Pub Date : 2019-10-04 , DOI: 10.1103/revmodphys.91.041001
Deung-Jang Choi; Nicolas Lorente; Jens Wiebe; Kirsten von Bergmann; Alexander F. Otte; Andreas J. Heinrich

Magnetism at low dimensions is a thriving field of research with exciting opportunities in technology. This Colloquium focuses on the properties of 1D magnetic systems on solid surfaces. From the emulation of 1D quantum phases to the potential realization of Majorana edge states, spin chains are unique systems to study. The advent of scanning tunneling microscope (STM) based techniques has permitted us to engineer spin chains in an atom-by-atom fashion via atom manipulation and to access their spin states on the ultimate atomic scale. Here the current state of research on spin correlations and dynamics of atomic spin chains as studied by the STM is presented. After a brief review of the main properties of spin chains on solid surfaces, spin chains are classified according to the coupling of their magnetic moments with the holding substrate. This classification scheme takes into account that the nature and lifetimes of the spin-chain excitations intrinsically depend on the holding substrate. Interest is shown of using insulating layers on metals, which generally results in an increase in the spin state’s lifetimes such that their quantized nature gets evident and they are individually accessible. Next shown is the use of semiconductor substrates promising additional control through the tunable electron density via doping. When the coupling to the substrate is increased for spin chains on metals, the substrate conduction electron mediated interactions can lead to emergent exotic phases of the coupled spin chain-substrate conduction electron system. A particularly interesting example is furnished by superconductors. Magnetic impurities induce states in the superconducting gap. Because of the extended nature of the spin chain, the in-gap states develop into bands that can lead to the emergence of 1D topological superconductivity and consequently to the appearance of Majorana edge states. Finally, an outlook is given on the use of spin chains in spintronics, quantum communication, quantum computing, quantum simulations, and quantum sensors.
更新日期:2019-10-04

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug