当前位置: X-MOL 学术Mater. Today › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Towards better Li metal anodes: Challenges and strategies
Materials Today ( IF 24.2 ) Pub Date : 2020-03-01 , DOI: 10.1016/j.mattod.2019.09.018
Ying Zhang , Tong-Tong Zuo , Jelena Popovic , Kyungmi Lim , Ya-Xia Yin , Joachim Maier , Yu-Guo Guo

Abstract Anode materials are key components of batteries that significantly impact their specific energy and power. Li metal is considered as the ultimate anode due to its high theoretical capacity (∼3860 mA h/g) and low redox potential (−3.04 V vs. standard hydrogen electrode). Specifically, rechargeable Li metal batteries (LMBs) with enabled safety promise to surpass the energy density of current Li-ion batteries. Unfortunately, the apparently inevitable growth of dendritic Li, electrolyte consumption, the severe volume changes and the connected potential safety risks of LMBs limit their practical application. Recent strategies based on manipulation of electrolyte chemistry, interface engineering, and structure modification of Li host have reportedly achieved improvement. At the moment, the trend is to move towards all-solid-state LMBs. However, there are serious challenges in terms of low ionic conductivity, poor interfacial contact, and sluggish kinetics. While there are excellent reviews available, this review emphasizes problems and provides additional insight in advanced strategies for stabilizing Li metal anodes in liquid, polymer, ceramic and composite electrolytes. New approaches and novel materials to overcome the above challenges are referred. This review aims at raising relevant questions and outlining future strategies for next-generation high-energy storage systems.

中文翻译:

迈向更好的锂金属负极:挑战与策略

摘要 负极材料是电池的关键组成部分,对电池的比能量和功率有显着影响。由于其高理论容量(~3860 mA h/g)和低氧化还原电位(-3.04 V vs.标准氢电极),锂金属被认为是最终的负极。具体而言,可充电锂金属电池 (LMB) 具有安全性,有望超过当前锂离子电池的能量密度。不幸的是,锂枝晶明显不可避免的生长、电解质消耗、剧烈的体积变化以及 LMB 相关的潜在安全风险限制了它们的实际应用。据报道,最近基于电解质化学操作、界面工程和锂主体结构改性的策略已经取得了改进。目前,趋势是转向全固态 LMB。然而,在低离子电导率、差的界面接触和缓慢的动力学方面存在严重挑战。虽然有优秀的评论可用,但这篇评论强调了问题,并提供了在液体、聚合物、陶瓷和复合电解质中稳定锂金属负极的先进策略的更多见解。提到了克服上述挑战的新方法和新材料。本综述旨在提出相关问题并概述下一代高能量存储系统的未来战略。陶瓷和复合电解质。提到了克服上述挑战的新方法和新材料。本综述旨在提出相关问题并概述下一代高能量存储系统的未来战略。陶瓷和复合电解质。提到了克服上述挑战的新方法和新材料。本综述旨在提出相关问题并概述下一代高能量存储系统的未来战略。
更新日期:2020-03-01
down
wechat
bug