当前位置: X-MOL 学术Eur. J. Pharm. Biopharm. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulated biological fluid exposure changes nanoceria's surface properties but not its biological response.
European Journal of Pharmaceutics and Biopharmaceutics ( IF 4.9 ) Pub Date : 2019-09-26 , DOI: 10.1016/j.ejpb.2019.09.023
Robert A Yokel 1 , Matthew L Hancock 2 , Benjamin Cherian 2 , Alexandra J Brooks 2 , Marsha L Ensor 1 , Hemendra J Vekaria 3 , Patrick G Sullivan 3 , Eric A Grulke 2
Affiliation  

Nanoscale cerium dioxide (nanoceria) has industrial applications, capitalizing on its catalytic, abrasive, and energy storage properties. It auto-catalytically cycles between Ce3+ and Ce4+, giving it pro-and anti-oxidative properties. The latter mediates beneficial effects in models of diseases that have oxidative stress/inflammation components. Engineered nanoparticles become coated after body fluid exposure, creating a corona, which can greatly influence their fate and effects. Very little has been reported about nanoceria surface changes and biological effects after pulmonary or gastrointestinal fluid exposure. The study objective was to address the hypothesis that simulated biological fluid (SBF) exposure changes nanoceria's surface properties and biological activity. This was investigated by measuring the physicochemical properties of nanoceria with a citric acid coating (size; morphology; crystal structure; surface elemental composition, charge, and functional groups; and weight) before and after exposure to simulated lung, gastric, and intestinal fluids. SBF-exposed nanoceria biological effect was assessed as A549 or Caco-2 cell resazurin metabolism and mitochondrial oxygen consumption rate. SBF exposure resulted in loss or overcoating of nanoceria's surface citrate, greater nanoceria agglomeration, deposition of some SBF components on nanoceria's surface, and small changes in its zeta potential. The engineered nanoceria and SBF-exposed nanoceria produced no statistically significant changes in cell viability or cellular oxygen consumption rates.

中文翻译:

模拟的生物流体暴露会改变纳米氧化铈的表面性质,但不会改变其生物响应。

纳米级二氧化铈(nanoceria)凭借其催化,磨料和能量存储特性而在工业上得到了应用。它在Ce3 +和Ce4 +之间自动催化循环,从而具有亲和抗氧化性能。后者在具有氧化应激/炎症成分的疾病模型中介导有益作用。经过工程改造的纳米粒子在暴露于体液后会被涂覆,形成电晕,这会极大地影响其命运和影响。关于肺或胃肠液暴露后纳米氧化铈表面变化和生物学影响的报道很少。该研究目的是解决假说:模拟生物流体(SBF)暴露会改变纳米氧化铈的表面性质和生物活性。通过在暴露于模拟的肺,胃和肠液之前和之后用柠檬酸涂层测量纳米氧化铈的理化特性(尺寸;形态;晶体结构;表面元素组成,电荷和官能团;以及重量)来进行研究。SBF暴露的纳米氧化铈的生物学效应被评估为A549或Caco-2细胞刃天青的代谢和线粒体耗氧率。SBF暴露导致纳米氧化铈表面柠檬酸盐的损失或覆盖,纳米氧化铈更大的团聚,某些SBF组分在纳米氧化铈表面的沉积,以及其Zeta电位的微小变化。经工程改造的纳米氧化铈和SBF暴露的纳米氧化铈在细胞活力或细胞耗氧率方面均未产生统计学上的显着变化。晶体结构 表面元素组成,电荷和官能团;和体重)在接触模拟的肺,胃和肠液之前和之后。SBF暴露的纳米氧化铈的生物学效应被评估为A549或Caco-2细胞刃天青的代谢和线粒体耗氧率。SBF暴露导致纳米氧化铈表面柠檬酸盐的损失或覆盖,纳米氧化铈更大的团聚,某些SBF组分在纳米氧化铈表面的沉积,以及其Zeta电位的微小变化。经工程改造的纳米氧化铈和SBF暴露的纳米氧化铈在细胞活力或细胞耗氧率方面均未产生统计学上的显着变化。晶体结构 表面元素组成,电荷和官能团;和体重)在接触模拟的肺,胃和肠液之前和之后。SBF暴露的纳米氧化铈的生物学效应被评估为A549或Caco-2细胞刃天青的代谢和线粒体耗氧率。SBF暴露导致纳米氧化铈表面柠檬酸盐的损失或覆盖,纳米氧化铈更大的团聚,某些SBF组分在纳米氧化铈表面的沉积,以及其Zeta电位的微小变化。经工程改造的纳米氧化铈和SBF暴露的纳米氧化铈在细胞活力或细胞耗氧率方面均未产生统计学上的显着变化。SBF暴露的纳米氧化铈的生物学效应被评估为A549或Caco-2细胞刃天青的代谢和线粒体耗氧率。SBF暴露导致纳米氧化铈表面柠檬酸盐的损失或覆盖,纳米氧化铈更大的团聚,某些SBF组分在纳米氧化铈表面的沉积,以及其Zeta电位的微小变化。工程纳米氧化铈和暴露于SBF的纳米氧化铈在细胞活力或细胞耗氧率方面没有统计学上的显着变化。SBF暴露的纳米氧化铈的生物学效应被评估为A549或Caco-2细胞刃天青的代谢和线粒体耗氧率。SBF暴露导致纳米氧化铈表面柠檬酸盐的损失或覆盖,纳米氧化铈更大的团聚,某些SBF组分在纳米氧化铈表面的沉积,以及其Zeta电位的微小变化。经工程改造的纳米氧化铈和SBF暴露的纳米氧化铈在细胞活力或细胞耗氧率方面均未产生统计学上的显着变化。
更新日期:2019-09-26
down
wechat
bug