当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Weakening hydrogen adsorption on nickel via interstitial nitrogen doping promotes bifunctional hydrogen electrocatalysis in alkaline solution†
Energy & Environmental Science ( IF 32.5 ) Pub Date : 2019-08-28 , DOI: 10.1039/c9ee01743g
Tingting Wang 1, 2, 3, 4, 5 , Miao Wang 1, 2, 3, 4, 5 , Hao Yang 1, 2, 3, 4, 5 , Mingquan Xu 5, 6, 7, 8 , Chuandong Zuo 5, 8, 9, 10, 11 , Kun Feng 1, 2, 3, 4, 5 , Miao Xie 1, 2, 3, 4, 5 , Jun Deng 1, 2, 3, 4, 5 , Jun Zhong 1, 2, 3, 4, 5 , Wu Zhou 5, 6, 7, 8 , Tao Cheng 1, 2, 3, 4, 5 , Yanguang Li 1, 2, 3, 4, 5
Affiliation  

Ni-Based materials are promising candidates for the electrocatalytic hydrogen oxidation reaction and hydrogen evolution reaction in alkaline solution. However, pure Ni binds hydrogen very strongly. To promote its electrocatalytic activity would require the weakening of its hydrogen binding energy. Here, we demonstrate that interstitial nitrogen doping in Ni3N can greatly promote its electrocatalytic activity. Ni3N nanoparticles are prepared from the controlled nitridation of Ni-based coordination polymer nanosheets. The resultant product exhibits excellent mass activity superior to most existing non-precious-metal-based materials and great CO-tolerance for the hydrogen oxidation reaction, as well as remarkable activity and stability for the hydrogen evolution reaction. Our experimental results are further understood and supported by theoretical simulations showing that the interstitial nitrogen doping significantly decreases the hydrogen binding energy and lowers the activation barrier for water formation and dissociation.

中文翻译:

通过间隙氮掺杂 弱化镍对氢的吸附,可促进碱性溶液中双功能氢的电催化

镍基材料是在碱性溶液中进行电催化氢氧化反应和析氢反应的有希望的候选物。但是,纯镍非常牢固地结合氢。为了提高其电催化活性,将需要削弱其氢键能。在这里,我们证明Ni 3 N中的间隙氮掺杂可以大大提高其电催化活性。镍3N纳米粒子是由Ni基配位聚合物纳米片的受控氮化制备的。所得产物显示出优于大多数现有的非贵金属基材料的优异的质量活性,并且对于氢氧化反应具有很大的CO耐受性,并且对于氢析出反应具有显着的活性和稳定性。我们的实验结果得到了理论模拟的进一步理解和支持,表明间隙氮掺杂显着降低了氢结合能,并降低了水形成和离解的活化能垒。
更新日期:2019-12-04
down
wechat
bug