当前位置: X-MOL 学术J. Field Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Terrain‐adaptive wheel speed control on the Curiosity Mars rover: Algorithm and flight results
Journal of Field Robotics ( IF 8.3 ) Pub Date : 2019-08-26 , DOI: 10.1002/rob.21903
Olivier Toupet 1 , Jeffrey Biesiadecki 1 , Arturo Rankin 1 , Amanda Steffy 1 , Gareth Meirion‐Griffith 1 , Dan Levine 1 , Maximilian Schadegg 1 , Mark Maimone 1
Affiliation  

NASA’s Mars Science Laboratory (MSL) Curiosity rover landed in August 2012 and began experiencing higher rates of wheel damage beginning in October 2013. While the wheels were designed to accumulate considerable damage, the unexpected damage rate raised concerns regarding wheel lifetime. In response, the Jet Propulsion Laboratory (JPL) developed and deployed mobility flight software on Curiosity that reduces the forces on the wheels. The new algorithm adapts each wheel’s speed to fit the terrain topography in real-time, by leveraging the rover’s measured attitude rates and rocker/bogie suspension angles and rates. Together with a rigid-body kinematics model, it estimates the real-time wheel-terrain contact angles and commands idealized, no-slip wheel angular rates. In addition, free-floating ”wheelies” are detected and autonomously corrected. Ground test data indicate that the forces on the wheels are reduced by 19% for leading wheels and 11% for middle leading wheels. On the ground, the required data volume increased by up to 129%, and drive duration increased by up to 25%. In flight, data collected over 3.6 kilometers and 149 drives confirmed a reduction in wheel current, correlated with wheel torque, of 18.7%. The new algorithm proved to use fewer resources in flight than ground estimates suggested, as only a 10% increase in drive duration and double the drive data volume were experienced. These data indicate the promise of the new algorithm to extend the life of the wheels for the Curiosity rover. This paper describes the algorithm, its ground testing campaign and associated challenges, and its validation, implementation, and performance in flight.

中文翻译:

好奇号火星探测器的地形自适应轮速控制:算法和飞行结果

NASA 的火星科学实验室 (MSL) 好奇号火星车于 2012 年 8 月着陆,并从 2013 年 10 月开始经历更高的车轮损坏率。虽然车轮的设计会积累相当大的损坏,但意外的损坏率引起了人们对车轮寿命的担忧。作为回应,喷气推进实验室 (JPL) 在好奇号上开发并部署了移动飞行软件,以减少车轮上的力。新算法通过利用漫游车测得的姿态速率和摇臂/转向架悬挂角度和速率,实时调整每个车轮的速度以适应地形地形。结合刚体运动学模型,它可以估计实时车轮-地形接触角并命令理想化的无滑移车轮角速率。此外,还可以检测并自动纠正自由浮动的“车轮”。地面测试数据表明,前轮的作用力减少了 19%,中间的前轮减少了 11%。在地面上,所需的数据量增加了 129%,驱动时长增加了 25%。在飞行中,超过 3.6 公里和 149 次驱动器收集的数据证实,与车轮扭矩相关的车轮电流减少了 18.7%。事实证明,新算法在飞行中使用的资源少于地面估计所建议的资源,因为驱动持续时间仅增加了 10%,驱动数据量增加了一倍。这些数据表明新算法有望延长好奇号火星车车轮的使用寿命。本文介绍了该算法、其地面测试活动和相关挑战,以及其验证、实施和飞行性能。
更新日期:2019-08-26
down
wechat
bug