当前位置: X-MOL 学术Nat. Electron. › 论文详情
CMOS-integrated memristive non-volatile computing-in-memory for AI edge processors
Nature Electronics Pub Date : 2019-08-26 , DOI: 10.1038/s41928-019-0288-0
Wei-Hao Chen, Chunmeng Dou, Kai-Xiang Li, Wei-Yu Lin, Pin-Yi Li, Jian-Hao Huang, Jing-Hong Wang, Wei-Chen Wei, Cheng-Xin Xue, Yen-Cheng Chiu, Ya-Chin King, Chorng-Jung Lin, Ren-Shuo Liu, Chih-Cheng Hsieh, Kea-Tiong Tang, J. Joshua Yang, Mon-Shu Ho, Meng-Fan Chang

Non-volatile computing-in-memory (nvCIM) could improve the energy efficiency of edge devices for artificial intelligence applications. The basic functionality of nvCIM has recently been demonstrated using small-capacity memristor crossbar arrays combined with peripheral readout circuits made from discrete components. However, the advantages of the approach in terms of energy efficiency and operating speeds, as well as its robustness against device variability and sneak currents, have yet to be demonstrated experimentally. Here, we report a fully integrated memristive nvCIM structure that offers high energy efficiency and low latency for Boolean logic and multiply-and-accumulation (MAC) operations. We fabricate a 1 Mb resistive random-access memory (ReRAM) nvCIM macro that integrates a one-transistor–one-resistor ReRAM array with control and readout circuits on the same chip using an established 65 nm foundry complementary metal–oxide–semiconductor (CMOS) process. The approach offers an access time of 4.9 ns for three-input Boolean logic operations, a MAC computing time of 14.8 ns and an energy efficiency of 16.95 tera operations per second per watt. Applied to a deep neural network using a split binary-input ternary-weighted model, the system can achieve an inference accuracy of 98.8% on the MNIST dataset.
更新日期:2019-08-27

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug