当前位置: X-MOL 学术Prog. Part. Nucl. Phys. › 论文详情
Heavy ion charge exchange reactions as probes for nuclear β-decay
Progress in Particle and Nuclear Physics ( IF 10.764 ) Pub Date : 2019-08-12 , DOI: 10.1016/j.ppnp.2019.103716
Horst Lenske, Francesco Cappuzzello, Manuela Cavallaro, Maria Colonna

The status and prospects of heavy ion charge exchange reactions are reviewed. Their important role for nuclear reaction, nuclear structure, and beta-decay investigations is emphasized. Dealing with peripheral reactions, direct reaction theory gives at hand the proper methods for single (SCE) and double charge exchange (DCE) ion-ion scattering. The microscopic descriptions of charge exchange ion-ion residual interactions and the reaction mechanism are obtained by distorted wave theory. Ion-Ion optical potentials and reaction form factors are determined in a folding approach by using NN T-matrices and microscopic ground state and transition densities, respectively. The theory of one-step direct and two-step transfer reaction mechanisms for SCE reactions is discussed and illustrated in applications to data. Specific SCE reactions are discussed in detail, emphasizing the versatility of projectile–target combinations and incident energies. SCE reactions induced by 12C and 7Li beams are presented as representative examples. Heavy ion DCE reactions are shown to proceed in principle either by sequential pair transfer or two kinds of collisional NN processes. Double single charge exchange (DSCE) is given by two consecutive SCE processes, resembling in structure 2ν2β decay. A competing process is a two-nucleon mechanism, relying on short range NN correlations and leading to the correlated exchange of two charged mesons between projectile and target. These Majorana DCE (MDCE) events are of a similar diagrammatic structure as 0ν2β decay. The similarities of the DSCE and MDCE processes to pionic DCE reactions are elucidated. An overview on recent experimental research activities on heavy ion DCE research is given. Charge exchange strength distributions above the isovector spin-multipole resonance region and the excitation of nucleon resonances in high energy heavy ion SCE reactions are discussed in connection with the quenching issue.
更新日期:2019-08-12

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
南开大学陈弓课题组招聘启事
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug