当前位置: X-MOL 学术Protein Eng. Des. Sel. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Acyl chain that matters: introducing sn-2 acyl chain preference to a phospholipase D by protein engineering.
Protein Engineering, Design and Selection ( IF 2.4 ) Pub Date : 2019-09-10 , DOI: 10.1093/protein/gzz019
Jasmina Damnjanović 1 , Hideo Nakano 1 , Yugo Iwasaki 1
Affiliation  

Phospholipase D (PLD) is an enzyme widely used for enzymatic synthesis of structured phospholipids (PLs) with modified head groups. These PLs are mainly used as food supplements and liposome ingredients. Still, there is a need for an enzyme that discriminates between PLs and lysoPLs, for specific detection of lysoPLs in various specimens and enzymatic synthesis of certain PLs from a mixed substrate. To meet this demand, we aimed at altering sn-2 acyl chain recognition of a PLD, leading to a variant enzyme preferably reacting on lysoPLs, by protein engineering. Based on the crystal structure of Streptomyces antibioticus PLD, W166 was targeted for saturation mutagenesis due to its strong interaction with the sn-2 acyl chain of the PL. Screening result pointed at W166R and W166K PLDs to selectively react on lysophosphatidylcholine (lysoPC), while not on PC. These variants showed a negative correlation between activity and sn-2 chain length of PL substrates. This behavior was not observed in the wild-type (WT)-PLD. Kinetic analysis revealed that the W166R and W166K variants have 7-10 times higher preference to lysoPC compared to the WT-PLD. Additionally, W166R PLD showed detectable activity toward glycero-3-phosphocholine, unlike the WT-PLD. Applicability of the lysoPC-preferring PLD was demonstrated by detection of lysoPC in the mixed PC/lysoPC sample and by the synthesis of cyclic phosphatidic acid. Structure model analyses supported the experimental findings and provided a basis for the structure model-based hypothesis on the observed behavior of the enzymes.

中文翻译:

重要的酰基链:通过蛋白质工程将sn-2酰基链偏好性引入磷脂酶D中。

磷脂酶D(PLD)是一种广泛用于具有修饰的头基的结构化磷脂(PLs)的酶促合成的酶。这些PL主要用作食品补充剂和脂质体成分。仍然需要区分PLs和lysoPLs的酶,用于特异性检测各种样品中的lysoPLs和从混合底物中酶促合成某些PLs。为了满足这一需求,我们旨在通过蛋白质工程技术来改变PLD的sn-2酰基链识别,从而导致变体酶(优选与lysoPLs反应)。基于抗生素链霉菌PLD的晶体结构,W166由于其与PL的sn-2酰基链的强相互作用而成为饱和诱变的靶标。筛选结果指出W166R和W166K PLD可以与溶血磷脂酰胆碱(lysoPC)选择性反应,而不是在PC上。这些变体显示PL底物的活性与sn-2链长之间呈负相关。在野生型(WT)-PLD中未观察到此行为。动力学分析表明,与WT-PLD相比,W166R和W166K变体对lysoPC的偏爱性高7-10倍。另外,与WT-PLD不同,W166R PLD对甘油3-磷酸胆碱显示出可检测的活性。通过检测混合PC / lysoPC样品中的lysoPC以及合成环状磷脂酸,证明了lysoPC优先PLD的适用性。结构模型分析为实验结果提供了支持,并为基于结构模型的关于所观察到的酶行为的假设提供了基础。在野生型(WT)-PLD中未观察到此行为。动力学分析表明,与WT-PLD相比,W166R和W166K变体对lysoPC的偏爱性高7-10倍。另外,与WT-PLD不同,W166R PLD对甘油3-磷酸胆碱显示出可检测的活性。通过检测混合PC / lysoPC样品中的lysoPC以及合成环状磷脂酸,证明了lysoPC优先PLD的适用性。结构模型分析支持了实验结果,并为基于结构模型假说的酶行为提供了基础。在野生型(WT)-PLD中未观察到此行为。动力学分析表明,与WT-PLD相比,W166R和W166K变体对lysoPC的偏爱性高7-10倍。另外,与WT-PLD不同,W166R PLD对甘油3-磷酸胆碱显示出可检测的活性。通过检测混合PC / lysoPC样品中的lysoPC以及合成环状磷脂酸,证明了lysoPC优先PLD的适用性。结构模型分析支持了实验结果,并为基于结构模型假说的酶行为提供了基础。与WT-PLD不同,W166R PLD对3-甘油磷酸胆碱具有可检测的活性。通过检测混合PC / lysoPC样品中的lysoPC以及合成环状磷脂酸,证明了lysoPC优先PLD的适用性。结构模型分析支持了实验结果,并为基于结构模型假说的酶行为提供了基础。与WT-PLD不同,W166R PLD对3-甘油磷酸胆碱具有可检测的活性。通过检测混合PC / lysoPC样品中的lysoPC以及合成环状磷脂酸,证明了lysoPC优先PLD的适用性。结构模型分析支持了实验结果,并为基于结构模型假说的酶行为提供了基础。
更新日期:2019-08-09
down
wechat
bug