当前位置: X-MOL 学术Rev. Geophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Understanding the Seasonal Cycle of Antarctic Sea Ice Extent in the Context of Longer‐Term Variability
Reviews of Geophysics ( IF 25.2 ) Pub Date : 2019-09-04 , DOI: 10.1029/2018rg000631
Clare Eayrs 1 , David Holland 1, 2 , Diana Francis 1 , Till Wagner 3 , Rajesh Kumar 1 , Xichen Li 4
Affiliation  

Over the 40‐year satellite record, there has been a slight increasing trend in total annual mean Antarctic sea ice extent of approximately 1.5% per decade that is made up of the sum of significantly larger opposing regional trends. However, record increases in total Antarctic sea ice extent were observed during 2012–2014, followed by record lows (for the satellite era) through 2018. There is still no consensus on the main drivers of these trends, but it is generally believed that the atmosphere plays a significant role and that seasonal time scales and regional scale processes are important. Despite considerable yearly and regional variability, the mean seasonal cycle of growth and melt of Antarctic sea ice is strikingly consistent, with a slow growth but fast melt season. If we are to project trends in Antarctic sea ice and understand changes on longer time scales, we need to understand the mechanisms related to the seasonal cycle separately from those that drive variability. Twice‐yearly changes in the position and intensity of the zonal winds circling Antarctica are thought to drive the system by working with or against the evolving sea ice edge to slow the autumn advance and hasten the spring melt. Open water regions, created by divergence associated with the zonal winds, amplify the spring melt through increased warming of the upper ocean. Climate models fail to accurately reproduce mean Antarctic sea ice extent and overestimate its year‐to‐year variability, but they tend to capture the pattern and timing of the Antarctic seasonal cycle.

中文翻译:

在长期变化的背景下了解南极海冰范围的季节性周期

在40年的卫星记录中,南极的年平均总海冰面积呈每十年约1.5%的小幅增长趋势,这是由相对较大的相反区域趋势之和组成的。但是,在2012-2014年期间,南极海冰总范围的增加是有记录的,其次是到2018年(卫星时代)的历史最低点。关于这些趋势的主要驱动因素仍未达成共识,但人们普遍认为大气起着重要作用,季节时间尺度和区域尺度过程很重要。尽管每年和区域变化很大,但南极海冰的生长和融化的平均季节周期却非常一致,生长缓慢但融化季节很快。如果我们要预测南极海冰的趋势并了解更长的时间尺度上的变化,我们需要分别了解与季节周期相关的机制和导致变化的因素。据认为,绕过南极洲的纬向风的位置和强度每年两次变化,可通过与不断变化的海冰边缘一起工作或逆转海冰边缘来驱动系统,从而减缓秋季的进展并加速春季的融化。由与纬向风相关的发散产生的开放水域通过增加上层海洋的变暖来放大春季融化。气候模型无法准确地再现南极海冰的平均范围,并高估了其年际变化,但它们倾向于捕捉南极季节性周期的模式和时机。我们需要分别了解与季节周期相关的机制和导致变化的因素。据认为,绕过南极洲的纬向风的位置和强度每年两次变化,可通过与不断变化的海冰边缘一起工作或逆转海冰边缘来驱动系统,从而减缓秋季的进展并加速春季的融化。由与纬向风相关的发散产生的开放水域通过增加上层海洋的变暖来放大春季融化。气候模型无法准确地再现南极海冰的平均范围,并高估了其年际变化,但它们倾向于捕捉南极季节性周期的模式和时机。我们需要分别了解与季节周期相关的机制和导致变化的因素。据认为,绕过南极洲的纬向风的位置和强度每两年发生一次变化,可通过与不断变化的海冰边缘一起工作或对其进行逆转来驱动系统,从而减缓秋季的进展并加速春季的融化。由与纬向风相关的发散产生的开放水域通过增加上层海洋的变暖来放大春季融化。气候模型无法准确地再现南极海冰的平均范围,并高估了其年际变化,但它们倾向于捕捉南极季节性周期的模式和时机。据认为,绕过南极洲的纬向风的位置和强度每年两次变化,可通过与不断变化的海冰边缘一起工作或逆转海冰边缘来驱动系统,从而减缓秋季的进展并加速春季的融化。由与纬向风相关的发散产生的开放水域通过增加上层海洋的变暖来放大春季融化。气候模型无法准确地再现南极海冰的平均范围,并高估了其年际变化,但它们倾向于捕捉南极季节性周期的模式和时机。据认为,绕过南极洲的纬向风的位置和强度每两年发生一次变化,可通过与不断变化的海冰边缘一起工作或对其进行逆转来驱动系统,从而减缓秋季的进展并加速春季的融化。由与纬向风相关的发散产生的开放水域通过增加上层海洋的变暖来放大春季融化。气候模型无法准确地再现南极海冰的平均范围,并高估了其年际变化,但它们倾向于捕捉南极季节性周期的模式和时机。
更新日期:2019-09-04
down
wechat
bug