当前位置: X-MOL 学术WIREs Comput. Mol. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface hopping methods for nonadiabatic dynamics in extended systems
Wiley Interdisciplinary Reviews: Computational Molecular Science ( IF 11.4 ) Pub Date : 2019-07-29 , DOI: 10.1002/wcms.1435
Linjun Wang 1 , Jing Qiu 1 , Xin Bai 1 , Jiabo Xu 1
Affiliation  

The review describes recent method developments toward application of the trajectory surface hopping approach for nonadiabatic dynamics simulations of extended systems. Due to the ease of implementation and good balance between efficiency and reliability, surface hopping has become one of the most widely used mixed quantum‐classical methods for studying general charge and exciton dynamics. In extended systems (e.g., aggregates, polymers, surfaces, interfaces, and solids), however, surface hopping suffers from the difficulty to treat complex surface crossings in the adiabatic representation, and thus the relevant applications have been limited in the past years. The latest studies have allowed us to make a systematic classification of the surface crossings and identify their different influence mechanisms on the traditional surface hopping machinery, including problems related to the phase uncertainty correction of adiabatic states, the wave function propagation, the calculation of hopping probabilities, the velocity adjustment after surface hops, and the artificial long‐range population transfer amplified by decoherence corrections. Elegant solutions to each of these problems have enabled us to get fast time step convergence and size independence even for very large systems with different strengths of electron–phonon couplings. Thereby, the recent theoretical progresses have opened the door to simulate the real‐time and real‐space dynamics (e.g., charge separation, recombination, relaxation, and diffusion) in realistic extended systems, and will generate comprehensive understanding to promote the development of many research fields in chemistry, physics, biology, and material sciences in the near future.

中文翻译:

扩展系统中非绝热动力学的表面跳变方法

这篇综述描述了轨迹轨迹跳变方法在扩展系统的非绝热动力学仿真中的应用的最新方法发展。由于易于实施以及效率和可靠性之间的良好平衡,表面跳变已成为研究一般电荷和激子动力学的最广泛使用的混合量子经典方法之一。然而,在扩展的系统中(例如,聚集体,聚合物,表面,界面和固体),表面跳变难以以绝热表示法处理复杂的表面交叉,因此,在过去的几年中,相关的应用受到了限制。最新研究使我们能够对表面交叉点进行系统分类,并确定它们对传统表面跳变机械的不同影响机制,包括与绝热状态的相位不确定性校正,波函数传播,跳变概率的计算有关的问题。 ,表面跳之后的速度调整以及通过相干校正放大的人工远程种群转移。针对这些问题的精妙解决方案使我们能够获得快速的时间步收敛性和尺寸独立性,即使对于具有不同强度的电子-声子耦合的大型系统也是如此。因此,最近的理论进展为模拟实时和真实空间动力学(例如电荷分离,重组,弛豫,
更新日期:2019-11-18
down
wechat
bug