当前位置: X-MOL 学术Acta Biomater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Compressive deformation and failure of trabecular structures in a turtle shell.
Acta Biomaterialia ( IF 9.7 ) Pub Date : 2019-07-13 , DOI: 10.1016/j.actbio.2019.07.023
Edward Ampaw 1 , Tunji Adetayo Owoseni 2 , Fen Du 3 , Nelson Pinilla 4 , John Obayemi 5 , Jingjie Hu 4 , Pierre-Marie Nigay 6 , Ange Nzihou 7 , Vanessa Uzonwanne 5 , Martiale Gaetan Zebaze-Kana 2 , Mandar Dewoolkar 8 , Ting Tan 8 , Winston Soboyejo 6
Affiliation  

Turtle shells comprising of cortical and trabecular bones exhibit intriguing mechanical properties. In this work, compression tests were performed using specimens made from the carapace of Kinixys erosa turtle. A combination of imaging techniques and mechanical testing were employed to examine the responses of hierarchical microstructures of turtle shell under compression. Finite element models produced from microCT-scanned microstructures and analytical foam structure models were then used to elucidate local responses of trabecular bones deformed under compression. The results reveal the contributions from micro-strut bending and stress concentrations to the fractural mechanisms of trabecular bone structures. The porous structures of turtle shells could be an excellent prototype for the bioinspired design of deformation-resistant structures.

Statement of Significance

In this study, a combination of analytical, computational models and experiments is used to study the underlying mechanisms that contribute to the compressive deformation of a Kinixys erosa turtle shell between the nano-, micro- and macro-scales. The proposed work shows that the turtle shell structures can be analyzed as sandwich structures that have the capacity to concentrate deformation and stresses within the trabecular bones, which enables significant energy absorption during compressive deformation. Then, the trends in the deformation characteristics and the strengths of the trabecular bone segments are well predicted by the four-strut model, which captures the effects of variations in strut length, thickness and orientation that are related to microstructural uncertainties of the turtle shells. The above results also suggest that the model may be used to guide the bioinspired design of sandwich porous structures that mimic the properties of the cortical and trabecular bone segments of turtle shells under a range of loading conditions.



中文翻译:

龟壳中小梁结构的压缩变形和破坏。

由皮质和小梁骨组成的乌龟壳表现出令人着迷的机械性能。在这项工作中,使用由Kinixys erosa龟的甲壳制成的标本进行了压缩测试。结合成像技术和机械测试来检查龟壳在压缩状态下的微观结构响应。然后使用由microCT扫描的微观结构和分析性泡沫结构模型生成的有限元模型来阐明受压变形的小梁骨的局部响应。结果揭示了微支柱弯曲和应力集中对小梁骨结构的断裂机制的贡献。龟壳的多孔结构可能是抗变形结构的生物启发设计的绝佳原型。

重要声明

在这项研究中,分析,计算模型和实验的组合被用于研究导致Kinixys erosa龟壳在纳米,微观和宏观尺度之间压缩变形的潜在机制。拟议的工作表明,可以将龟壳结构分析为夹层结构,该结构具有将变形和应力集中在小梁骨内的能力,从而可以在压缩变形过程中显着吸收能量。然后,通过四支柱模型可以很好地预测小梁骨段的变形特征和强度趋势,该模型捕获了支柱长度,厚度和方向变化的影响,这些变化与龟壳的微观结构不确定性有关。

更新日期:2019-07-14
down
wechat
bug