当前位置: X-MOL 学术Nat. Protoc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Solidifying framework nucleic acids with silica
Nature Protocols ( IF 14.8 ) Pub Date : 2019-07-03 , DOI: 10.1038/s41596-019-0184-0
Xinxin Jing 1, 2 , Fei Zhang 3, 4 , Muchen Pan 1 , Xinpei Dai 1 , Jiang Li 1 , Lihua Wang 1, 5 , Xiaoguo Liu 2 , Hao Yan 3, 4 , Chunhai Fan 1, 2
Affiliation  

Soft matter can serve as a template to guide the growth of inorganic components with well-controlled structural features. However, the limited design space of conventional organic and biomolecular templates restricts the complexity and accuracy of templated growth. In past decades, the blossoming of structural DNA nanotechnology has provided us with a large reservoir of delicate-framework nucleic acids with design precision down to a single base. Here, we describe a DNA origami silicification (DOS) approach for generating complex silica composite nanomaterials. By utilizing modified silica sol–gel chemistry, pre-hydrolyzed silica precursor clusters can be uniformly coated onto the surface of DNA frameworks; thus, user-defined DNA–silica hybrid materials with ~3-nm precision can be achieved. More importantly, this method is applicable to various 1D, 2D and 3D DNA frameworks that range from 10 to >1,000 nm. Compared to pure DNA scaffolds, a tenfold increase in the Young’s modulus (E modulus) of these composites was observed, owing to their soft inner core and solid silica shell. We further demonstrate the use of solidified DNA frameworks to create 3D metal plasmonic devices. This protocol provides a platform for synthesizing inorganic materials with unprecedented complexity and tailored structural properties. The whole protocol takes ~10 d to complete.



中文翻译:

用二氧化硅固化骨架核酸

软物质可以作为模板来指导具有良好控制结构特征的无机成分的生长。然而,传统有机和生物分子模板有限的设计空间限制了模板化生长的复杂性和准确性。在过去的几十年里,结构 DNA 纳米技术的蓬勃发展为我们提供了大量精细框架核酸,设计精度低至单个碱基。在这里,我们描述了一种用于生成复杂二氧化硅复合纳米材料的 DNA 折纸硅化 (DOS) 方法。通过利用改良的硅溶胶-凝胶化学,预水解的二氧化硅前体簇可以均匀地涂覆在 DNA 骨架的表面上;因此,可以实现精度约为 3 nm 的用户定义的 DNA-二氧化硅混合材料。更重要的是,这种方法适用于各种一维、2D 和 3D DNA 框架,范围从 10 到 >1,000 nm。与纯 DNA 支架相比,杨氏模量增加了十倍(观察到这些复合材料的E模量),因为它们具有柔软的内核和固体二氧化硅壳。我们进一步证明了使用固化的 DNA 框架来创建 3D 金属等离子体设备。该协议为合成具有前所未有的复杂性和定制结构特性的无机材料提供了一个平台。整个协议需要大约 10 天才能完成。

更新日期:2019-11-18
down
wechat
bug