当前位置: X-MOL 学术npj Quant. Mater. › 论文详情
Intertwined chiral charge orders and topological stabilization of the light-induced state of a prototypical transition metal dichalcogenide
npj Quantum Materials Pub Date : 2019-06-26 , DOI: 10.1038/s41535-019-0172-1
Yaroslav A. Gerasimenko, Petr Karpov, Igor Vaskivskyi, Serguei Brazovskii, Dragan Mihailovic

The fundamental idea that the constituents of interacting many body systems in complex quantum materials may self-organise into long range order under highly non-equilibrium conditions leads to the notion that entirely new and unexpected functionalities might be artificially created. However, demonstrating new emergent order in highly non-equilibrium transitions has proven surprisingly difficult. In spite of huge recent advances in experimental ultrafast time-resolved techniques, methods that average over successive transition outcomes have so far proved incapable of elucidating the emerging spatial structure. Here, using scanning tunneling microscopy, we report for the first time the charge order emerging after a single transition outcome initiated by a single optical pulse in a prototypical two-dimensional dichalcogenide 1T-TaS2. By mapping the vector field of charge displacements of the emergent state, we find surprisingly intricate, long-range, topologically non-trivial charge order in which chiral domain tiling is intertwined with unpaired dislocations which play a crucial role in enhancing the emergent states’ remarkable stability. The discovery of the principles that lead to metastability in charge-ordered systems opens the way to designing novel emergent functionalities, particularly ultrafast all-electronic non-volatile cryo-memories.
更新日期:2019-11-18

 

全部期刊列表>>
化学/材料学中国作者研究精选
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug