当前位置: X-MOL 学术Faraday Discuss. › 论文详情
Modeling multidimensional spectral lineshapes from first principles: application to water-solvated adenine
Faraday Discussions ( IF 3.712 ) Pub Date : 2019-06-20 , DOI: 10.1039/c9fd00072k
Javier Segarra-Martí; Francesco Segatta; Tristan A. Mackenzie; Artur Nenov; Ivan Rivalta; Michael J. Bearpark; Marco Garavelli

In this discussion we present a methodology to describe spectral lineshape from first principles, providing insight into the solvent–solute molecular interactions in terms of static and dynamic disorder and how these shape the signals recorded experimentally in linear and nonlinear optical spectroscopies, including two-dimensional electronic spectroscopy (2DES). Two different strategies for simulating the lineshape are compared: both rely on the same evaluation of the coupling between the electronic states and the intra-molecular vibrations, while they differ in describing the influence exerted by the diverse water configurations attained along a molecular dynamics (MD) simulation. The first method accounts for such water arrangements as first order perturbations on the adenine energies computed for a single reference (gas phase) quantum calculation. The second method requires computation of the manifold of excited states explicitly at each simulation snapshot, employing a hybrid quantum mechanics/molecular mechanics (QM/MM) scheme. Both approaches are applied to a large number of states of the adenine singlet excited manifold (chosen because of its biological role), and compared with available experimental data. They give comparable results but the first approach is two orders of magnitude faster. We show how the various contributions (static/dynamic disorder, intra-/inter-molecular interactions) sum up to build the total broadening observed in experiments.
更新日期:2019-12-17

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug