当前位置: X-MOL 学术Plant Physiol. › 论文详情
Gibberellins Act Downstream of Arabis PERPETUAL FLOWERING1 to Accelerate Floral Induction during Vernalization
Plant Physiology ( IF 6.305 ) Pub Date : 2019-07-01 , DOI: 10.1104/pp.19.00021
Vicky Tilmes, Julieta L. Mateos, Eva Madrid, Coral Vincent, Edouard Severing, Esther Carrera, Isabel López-Díaz, George Coupland

Regulation of flowering by endogenous and environmental signals ensures that reproduction occurs under optimal conditions to maximize reproductive success. Involvement of the growth regulator gibberellin (GA) in the control of flowering by environmental cues varies among species. Arabis alpina Pajares, a model perennial member of the Brassicaceae, only undergoes floral induction during vernalization, allowing definition of the role of GA specifically in this process. The transcription factor PERPETUAL FLOWERING1 (PEP1) represses flowering until its mRNA levels are reduced during vernalization. Genome-wide analyses of PEP1 targets identified genes involved in GA metabolism and signaling, and many of the binding sites in these genes were specific to the A. alpina lineage. Here, we show that the pep1 mutant exhibits an elongated-stem phenotype, similar to that caused by treatment with exogenous GA, consistent with PEP1 repressing GA responses. Moreover, in comparison with the wild type, the pep1 mutant contains higher GA4 levels and is more sensitive to GA prior to vernalization. Upon exposure to cold temperatures, GA levels fall to low levels in the pep1 mutant and in wild-type plants, but GA still promotes floral induction and the transcription of floral meristem identity genes during vernalization. Reducing GA levels strongly impairs flowering and inflorescence development in response to short vernalization treatments, but longer treatments overcome the requirement for GA. Thus, GA accelerates the floral transition during vernalization in A. alpina, the down-regulation of PEP1 likely increases GA sensitivity, and GA responses contribute to determining the length of vernalization required for flowering and reproduction.
更新日期:2019-06-29

 

全部期刊列表>>
化学/材料学中国作者研究精选
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug