当前位置: X-MOL 学术Curr. Opin. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface enhanced nuclear magnetic resonance relaxation mechanisms and their significance in chemical engineering applications
Current Opinion in Chemical Engineering ( IF 6.6 ) Pub Date : 2019-05-14 , DOI: 10.1016/j.coche.2019.03.010
Brandon E Kinn , Tristan R Myers , Alan M Allgeier

Rates of nuclear magnetic resonance (NMR) relaxation have been utilized in the characterization of natural and synthetic porous media, effectively providing an alternate form of porosimetry. The physical basis for characterization is the enhancement in relaxation rate associated with fluid surface interactions with contributions from paramagnetism, dipolar coupling and diffusion. While paramagnetism dominates in most geological samples, recent interest has focused on surfaces with negligible content of paramagnetic centers, such as kerogen in shales or synthetic polymers. Here, dipolar coupling (intermolecular and/or intramolecular) has been demonstrated as an important relaxation mechanism. Following from fundamental insights, new applications are being developed to characterize fluid adsorption strengths relevant to catalysis and pore fluid compositions relevant to gas separations. NMR relaxometry will find growing application in a number of chemical engineering subdisciplines.



中文翻译:

表面增强核磁共振弛豫机理及其在化学工程中的意义

核磁共振(NMR)弛豫速率已用于天然和合成多孔介质的表征,有效地提供了孔隙率法的另一种形式。表征的物理基础是与流体表面相互作用相关的弛豫率的提高,顺磁,偶极耦合和扩散的作用对此有贡献。尽管顺磁性在大多数地质样品中占主导地位,但最近的兴趣集中在顺磁中心含量可忽略不计的表面上,例如页岩或合成聚合物中的干酪根。在此,偶极偶联(分子间和/或分子内)已被证明是重要的弛豫机制。根据基本见解,正在开发新的应用程序来表征与催化有关的流体吸附强度和与气体分离有关的孔隙流体成分。NMR弛豫法将在许多化学工程子学科中得到越来越多的应用。

更新日期:2019-05-14
down
wechat
bug