当前位置: X-MOL 学术Prog. Energy Combust. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mixed ionic-electronic conducting (MIEC) membranes for thermochemical reduction of CO2: A review
Progress in Energy and Combustion Science ( IF 29.5 ) Pub Date : 2019-09-01 , DOI: 10.1016/j.pecs.2019.04.003
Xiao-Yu Wu , Ahmed F. Ghoniem

Abstract Intermediate temperature membrane-supported CO2 thermochemical reduction using renewable energy is a clean approach for reusing CO2. To implement this technology at scale, stable catalytic membrane materials with fast kinetics should be developed, and reactor designs and system integrations should be optimized. In this review, we highlight major advancements in experimental and numerical efforts on mixed ionic-electronic conducting (MIEC) membrane-supported CO2 thermochemical reduction, and discuss the connection among materials, kinetics, membranes and reactor design. First, we discuss the thermodynamics and kinetics of CO2 reduction and the working principles of membrane reactors. Two methods are compared: chemical looping (redox) and membrane supported CO2 reduction. Next, we compare CO2 conversion rates on various membrane materials and their stability. Strontium based perovskites, e.g., Nb2O5-doped SrCo0.8Fe0.2O3-δ (SCoF-82) show the highest CO2 reduction rates so far, but they suffer degradation mainly from carbonate formation. Mixed-phase membranes are promising, with high reduction rates and good stability. Surface modification can enhance the reduction rates and increase membrane stabilities. In order to accelerate the development in materials and membranes, kinetic parameters, e.g., conductivity and reaction rate constants should be obtained from high throughput benchtop reactors complemented by reduced physical models. The mechanisms and transport models for surface kinetics and bulk diffusion are summarized. Using these results, changes in membrane morphology and surface chemistry are proposed. Finally, we summarize methods and system-scaled analysis to integrate this membrane technology with renewable or waste heat sources for fuel production and energy storage.

中文翻译:

用于热化学还原 CO2 的混合离子电子导电 (MIEC) 膜:综述

摘要 利用可再生能源进行中温膜支持的 CO2 热化学还原是一种清洁的 CO2 再利用方法。为了大规模实施该技术,应开发具有快速动力学的稳定催化膜材料,并应优化反应器设计和系统集成。在这篇综述中,我们重点介绍了混合离子电子导电 (MIEC) 膜支持的 CO2 热化学还原实验和数值研究方面的重大进展,并讨论了材料、动力学、膜和反应器设计之间的联系。首先,我们讨论了 CO2 还原的热力学和动力学以及膜反应器的工作原理。比较了两种方法:化学循环(氧化还原)和膜支持的 CO2 还原。下一个,我们比较了各种膜材料的 CO2 转化率及其稳定性。锶基钙钛矿,例如 Nb2O5 掺杂的 SrCo0.8Fe0.2O3-δ (SCoF-82) 显示出迄今为止最高的 CO2 还原率,但它们的降解主要是由于碳酸盐的形成。混合相膜很有前景,具有高还原率和良好的稳定性。表面改性可以提高还原率并增加膜稳定性。为了加速材料和膜的开发,动力学参数,例如电导率和反应速率常数,应该从高通量台式反应器中获得,并辅以简化的物理模型。总结了表面动力学和体扩散的机制和传输模型。使用这些结果,提出了膜形态和表面化学的变化。最后,
更新日期:2019-09-01
down
wechat
bug