当前位置: X-MOL 学术Natl. Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Scalable volumetric imaging for ultrahigh-speed brain mapping at synaptic resolution
National Science Review ( IF 20.6 ) Pub Date : 2019-04-24 , DOI: 10.1093/nsr/nwz053
Hao Wang 1, 2 , Qingyuan Zhu 1 , Lufeng Ding 2 , Yan Shen 2 , Chao-Yu Yang 2 , Fang Xu 2 , Chang Shu 3, 4 , Yujie Guo 1 , Zhiwei Xiong 5, 6 , Qinghong Shan 2 , Fan Jia 7 , Peng Su 7 , Qian-Ru Yang 2 , Bing Li 2 , Yuxiao Cheng 2 , Xiaobin He 7 , Xi Chen 3 , Feng Wu 5, 6, 8 , Jiang-Ning Zhou 2, 8 , Fuqiang Xu 7, 8 , Hua Han 3, 8 , Pak-Ming Lau 2 , Guo-Qiang Bi 1, 6, 8
Affiliation  

The speed of high-resolution optical imaging has been a rate-limiting factor for meso-scale mapping of brain structures and functional circuits, which is of fundamental importance for neuroscience research. Here, we describe a new microscopy method of Volumetric Imaging with Synchronized on-the-fly-scan and Readout (VISoR) for high-throughput, high-quality brain mapping. Combining synchronized scanning beam illumination and oblique imaging over cleared tissue sections in smooth motion, the VISoR system effectively eliminates motion blur to obtain undistorted images. By continuously imaging moving samples without stopping, the system achieves high-speed 3D image acquisition of an entire mouse brain within 1.5 hours, at a resolution capable of visualizing synaptic spines. A pipeline is developed for sample preparation, imaging, 3D image reconstruction and quantification. Our approach is compatible with immunofluorescence methods, enabling flexible cell-type specific brain mapping and is readily scalable for large biological samples such as primate brains. Using this system, we examined behaviorally relevant whole-brain neuronal activation in 16 c-Fos-shEGFP mice under resting or forced swimming conditions. Our results indicate the involvement of multiple subcortical areas in stress response. Intriguingly, neuronal activation in these areas exhibits striking individual variability among different animals, suggesting the necessity of sufficient cohort size for such studies.

中文翻译:

用于以突触分辨率进行超高速脑映射的可扩展体积成像

高分辨率光学成像的速度一直是大脑结构和功能回路中尺度映射的限速因素,这对神经科学研究至关重要。在这里,我们描述了一种新的体积成像显微镜方法,具有同步实时扫描和读出 (VISoR),用于高通量、高质量的大脑映射。VISoR 系统将同步扫描光束照明和倾斜成像在平滑运动的清除组织切片上相结合,有效地消除了运动模糊,从而获得不失真的图像。通过不间断地连续对移动样本进行成像,该系统在 1.5 小时内实现了整个小鼠大脑的高速 3D 图像采集,分辨率能够可视化突触棘。开发了用于样品制备、成像、3D 图像重建和量化。我们的方法与免疫荧光方法兼容,可实现灵活的细胞类型特异性大脑映射,并且易于扩展用于大型生物样本,例如灵长类动物的大脑。使用该系统,我们检查了 16 只 c-Fos-shEGFP 小鼠在休息或强迫游泳条件下与行为相关的全脑神经元激活。我们的结果表明多个皮质下区域参与压力反应。有趣的是,这些区域的神经元激活在不同动物之间表现出惊人的个体差异,表明此类研究需要足够的队列规模。实现灵活的细胞类型特定大脑映射,并且可以轻松扩展用于大型生物样本,例如灵长类动物的大脑。使用该系统,我们检查了 16 只 c-Fos-shEGFP 小鼠在休息或强迫游泳条件下与行为相关的全脑神经元激活。我们的结果表明多个皮层下区域参与压力反应。有趣的是,这些区域的神经元激活在不同动物之间表现出惊人的个体差异,表明此类研究需要足够的队列规模。实现灵活的细胞类型特定大脑映射,并且可以轻松扩展用于大型生物样本,例如灵长类动物的大脑。使用该系统,我们检查了 16 只 c-Fos-shEGFP 小鼠在休息或强迫游泳条件下与行为相关的全脑神经元激活。我们的结果表明多个皮层下区域参与压力反应。有趣的是,这些区域的神经元激活在不同动物之间表现出惊人的个体差异,表明此类研究需要足够的队列规模。
更新日期:2019-04-24
down
wechat
bug