当前位置: X-MOL 学术Plant Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Involvement of glutathione metabolism in Eichhornia crassipes tolerance to arsenic.
Plant Biology ( IF 3.9 ) Pub Date : 2019-04-18 , DOI: 10.1111/plb.12988
I N R de Souza Reis 1 , J Alves de Oliveira 2 , M C Ventrella 1 , W C Otoni 1 , C S Marinato 2 , L Paiva de Matos 2
Affiliation  

Aquatic macrophytes are potentially useful for phytoremediation programmes in environments contaminated by arsenic (As). Biochemical and physiological modification analyses in different plant parts are important to understand As tolerance mechanisms. The objective was to evaluate glutathione metabolism in leaves and roots of Eichhornia crassipes (Mart.) Solms treated to As. Specimens of E. crassipes were cultured for 3 days in Clark's nutrient solution containing 7 μm As. The enzymes ATP sulphurylase (ATPS), glutathione reductase (GR), glutathione peroxidase (GSH-Px), glutathione sulphotransferase (GST) and γ-glutamylcysteine synthetase (γ-ECS) activity, glutathione content, total protein and non-protein thiols were evaluated. The ATPS activity increased in roots. GR activity in leaves and GSH-Px in roots were lower. GST activity was higher in roots and lower in leaves, and γ-ECS activity was higher in leaves. Glutathione levels were lower, total thiol levels were higher and non-protein levels did not change in E. crassipes leaves and roots. Exposure to As increased enzyme activity involved with sulphur metabolism, such as ATPS. Higher GR activity and lower GSH-Px indicate increased glutathione conjugation to As due to increased GSH availability. The higher GST activity indicates its participation in As detoxification and accumulation through As GSH conjugation. Changes in glutathione and thiol levels suggest high phytochelatin synthesis. In conclusion, the increments in ATPS, GR, GST and γ-ECS activity indicate that these enzymes are involved in GSH metabolism and are part of the E. crassipes As detoxification mechanism.

中文翻译:

谷胱甘肽代谢参与凤眼凤梨对砷的耐受性。

水生植物对砷(As)污染的环境中的植物修复计划很有用。了解植物不同部位的生化和生理修饰分析对于理解耐受机制很重要。目的是评估处理过砷的凤眼凤(Eichhornia crassipes(Mart。)Solms)的叶和根中的谷胱甘肽代谢。在含有7μmAs的Clark的营养液中将crassipes的标本培养3天。酶ATP硫磺化酶(ATPS),谷胱甘肽还原酶(GR),谷胱甘肽过氧化物酶(GSH-Px),谷胱甘肽磺基转移酶(GST)和γ-谷氨酰半胱氨酸合成酶(γ-ECS)活性,谷胱甘肽含量,总蛋白和非蛋白硫醇评估。根的ATPS活性增加。叶片的GR活性和根部的GSH-Px较低。根部的GST活性较高,叶片的GST活性较低,叶片的γ-ECS活性较高。景天肠叶片和根中谷胱甘肽水平较低,总硫醇水平较高,非蛋白质水平未发生变化。暴露于As增加与硫代谢有关的酶活性,例如ATPS。较高的GR活性和较低的GSH-Px表示由于增加的GSH利用率,使谷胱甘肽与As的结合增加。较高的GST活性表明其通过As GSH的结合参与了As的解毒和积累。谷胱甘肽和硫醇水平的变化表明植物螯合素的合成较高。总之,ATPS,GR,GST和γ-ECS活性的增加表明这些酶参与了GSH的代谢,并且是大肠埃希菌解毒机制的一部分。叶片中的γ-ECS活性较高。景天肠叶片和根中谷胱甘肽水平较低,总硫醇水平较高,非蛋白质水平未发生变化。暴露于As增加与硫代谢有关的酶活性,例如ATPS。较高的GR活性和较低的GSH-Px表示由于增加的GSH利用率,使谷胱甘肽与As的结合增加。较高的GST活性表明其通过As GSH的结合参与了As的解毒和积累。谷胱甘肽和硫醇水平的变化表明植物螯合素的合成较高。总之,ATPS,GR,GST和γ-ECS活性的增加表明这些酶参与了GSH的代谢,并且是大肠埃希菌解毒机制的一部分。叶片中的γ-ECS活性较高。景天肠叶片和根中谷胱甘肽水平较低,总硫醇水平较高,非蛋白质水平未发生变化。暴露于As增加与硫代谢有关的酶活性,例如ATPS。较高的GR活性和较低的GSH-Px表示由于增加的GSH利用率,使谷胱甘肽与As的结合增加。较高的GST活性表明其通过As GSH的结合参与了As的解毒和积累。谷胱甘肽和硫醇水平的变化表明植物螯合素的合成较高。总之,ATPS,GR,GST和γ-ECS活性的增加表明这些酶参与了GSH的代谢,并且是大肠埃希菌解毒机制的一部分。景天肠的叶和根中总硫醇水平较高,非蛋白质水平未发生变化。暴露于As增加与硫代谢有关的酶活性,例如ATPS。较高的GR活性和较低的GSH-Px表示由于增加的GSH利用率,使谷胱甘肽与As的结合增加。较高的GST活性表明其通过As GSH的结合参与了As的解毒和积累。谷胱甘肽和硫醇水平的变化表明植物螯合素的合成较高。总之,ATPS,GR,GST和γ-ECS活性的增加表明这些酶参与了GSH的代谢,并且是大肠埃希菌解毒机制的一部分。景天肠的叶和根中总硫醇水平较高,非蛋白质水平未发生变化。暴露于As增加与硫代谢有关的酶活性,例如ATPS。较高的GR活性和较低的GSH-Px表示由于增加的GSH利用率,使谷胱甘肽与As的结合增加。较高的GST活性表明其通过As GSH的结合参与了As的解毒和积累。谷胱甘肽和硫醇水平的变化表明植物螯合素的合成较高。总之,ATPS,GR,GST和γ-ECS活性的增加表明这些酶参与了GSH的代谢,并且是大肠埃希菌解毒机理的一部分。较高的GR活性和较低的GSH-Px表示由于增加的GSH利用率,使谷胱甘肽与As的结合增加。较高的GST活性表明其通过As GSH的结合参与了As的解毒和积累。谷胱甘肽和硫醇水平的变化表明植物螯合素的合成较高。总之,ATPS,GR,GST和γ-ECS活性的增加表明这些酶参与了GSH的代谢,并且是大肠埃希菌解毒机理的一部分。较高的GR活性和较低的GSH-Px表示由于增加的GSH利用率,使谷胱甘肽与As的结合增加。较高的GST活性表明其通过As GSH的结合参与了As的解毒和积累。谷胱甘肽和硫醇水平的变化表明植物螯合素的合成较高。总之,ATPS,GR,GST和γ-ECS活性的增加表明这些酶参与了GSH的代谢,并且是大肠埃希菌解毒机制的一部分。
更新日期:2019-04-18
down
wechat
bug