当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechano-chemical synthesis of crystalline superionic conductor CsAg4Br3-xI2+x (x = 0.32) and its application for Ag+ ion-beam generation
Journal of Alloys and Compounds ( IF 6.2 ) Pub Date : 2019-06-01 , DOI: 10.1016/j.jallcom.2019.03.076
Wenbin Zuo , Vasiliy Pelenovich , Alexander Tolstogouzov , Xiaomei Zeng , Zhenguo Wang , Xiaoqiang Song , Sergey I. Gusev , Canxin Tian , Dejun Fu

Abstract The mechano-chemical synthesis of crystalline superionic conductor CsAg4Br3-xI2+x was performed by the means of high-energy ball-milling using CsI-AgBr-AgI powders as precursors. The phase composition of the synthesized material was determined by X-ray diffraction and its variations versus the milling time and rotation rate were studied. Existence of a two-stage chemical reaction resulting in the production of intermediates CsAgBr2 and Ag(Br, I) was revealed. Almost pure CsAg4Br3-xI2+x phase was obtained at the rotation rate of 450 rpm after 3-h milling, and the x value was estimated to be 0.32 by energy dispersive X-ray spectroscopy (EDS). The structure and morphology of this solid electrolyte was investigated, and the grain size was estimated to be 200–500 nm. The thermal property was examined by DSC analysis, and melting temperature was estimated as 178 °C. The ionic conductivity at room temperature measured by AC impedance spectroscopy was approximately 0.14 S/cm and its dependence on temperature was studied. The Ag+ ion-conducting property of the prepared superionic conductor was exploited for ion-beam generation. The ion current of several nA was obtained at a working temperature of 177 °C and an accelerating voltage of 20 kV, and the dependences of ion current on temperature and accelerating voltage were studied. EDS and X-ray photoelectron spectra showed that Ag+ was a dominant component of the emitted ions.

中文翻译:

晶体超离子导体 CsAg4Br3-xI2+x (x = 0.32) 的机械化学合成及其在 Ag+ 离子束生成中的应用

摘要 以CsI-AgBr-AgI 粉末为前驱体,通过高能球磨法合成了晶体超离子导体CsAg4Br3-xI2+x。通过 X 射线衍射确定合成材料的相组成,并研究其随研磨时间和转速的变化。揭示了导致产生中间体 CsAgBr2 和 Ag(Br, I) 的两阶段化学反应的存在。在 450 rpm 的转速下研磨 3 小时后获得几乎纯的 CsAg4Br3-xI2+x 相,通过能量色散 X 射线光谱(EDS)估计 x 值为 0.32。研究了该固体电解质的结构和形态,估计晶粒尺寸为 200-500 nm。通过 DSC 分析检查热性能,并且熔化温度估计为178°C。通过交流阻抗谱测量的室温离子电导率约为 0.14 S/cm,并研究了其对温度的依赖性。利用所制备的超离子导体的 Ag+ 离子导电特性来产生离子束。在177 ℃的工作温度和20 kV的加速电压下获得了几nA的离子电流,并研究了离子电流对温度和加速电压的依赖性。EDS 和 X 射线光电子谱表明 Ag+ 是发射离子的主要成分。利用所制备的超离子导体的 Ag+ 离子导电特性来产生离子束。在177 ℃的工作温度和20 kV的加速电压下获得了几nA的离子电流,并研究了离子电流对温度和加速电压的依赖性。EDS 和 X 射线光电子谱表明 Ag+ 是发射离子的主要成分。利用所制备的超离子导体的 Ag+ 离子导电特性来产生离子束。在177 ℃的工作温度和20 kV的加速电压下获得了几nA的离子电流,并研究了离子电流对温度和加速电压的依赖性。EDS 和 X 射线光电子谱表明 Ag+ 是发射离子的主要成分。
更新日期:2019-06-01
down
wechat
bug