当前位置: X-MOL 学术Ceram. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fluoride-free synthesis and microstructure evolution of novel two-dimensional Ti3C2(OH)2 nanoribbons as high-performance anode materials for lithium-ion batteries
Ceramics International ( IF 5.2 ) Pub Date : 2019-05-01 , DOI: 10.1016/j.ceramint.2019.01.148
Biao Zhang , Jianfeng Zhu , Pei Shi , Wenling Wu , Fen Wang

Abstract Herein, we develop a fluoride-free hydrothermal etching approach using the small amounts of water-assisted potassium hydroxide as ingenious etching agents to produce novel two-dimensional Ti3C2(OH)2-MXene nanoribbons (Ti3C2(OH)2 NRs). The as-produced Ti3C2(OH)2 NRs possess less Al atoms, more abundant hydroxyl functional groups on their surface, and more open structure features compared with their pristine counterparts and the other etching products. Simultaneously, the resulting Ti3C2(OH)2 NRs show significantly enhanced Li ions storage capabilities with outstanding specific capacity of 143.4 mA h g−1 obtained at 100 mA g−1 after 250 cycles, excellent cycling stability, and good rate property, being significantly superior than the parent Ti3AlC2 phases and the sugarcane-like transitional etching products. The superior electrochemical properties of Ti3C2(OH)2 NRs could be ascribed to the unique nanoribbon architectures with rich hydroxyl terminal groups and few Al atoms, which facilitates the adsorption and storage of a growing number of Li ions on the surface active sites of Ti3C2(OH)2 NRs and the transport of electrons and ions effectively. What's more, this study provides a simple, effective, green, and nontoxic fluoride-free etching procedure to synthesize other more MXenes nanoribbons including but not limited to Ti3C2(OH)2 NRs as promising anode candidates for advanced lithium-ion batteries.

中文翻译:

新型二维 Ti3C2(OH)2 纳米带作为锂离子电池高性能负极材料的无氟合成和微观结构演变

摘要在此,我们开发了一种无氟水热蚀刻方法,使用少量的水辅助氢氧化钾作为巧妙的蚀刻剂,以生产新型二维 Ti3C2(OH)2-MXene 纳米带(Ti3C2(OH)2 NRs)。与原始对应物和其他蚀刻产品相比,所生产的 Ti3C2(OH)2 NRs 具有更少的 Al 原子、更丰富的表面羟基官能团和更多的开放结构特征。同时,所得的 Ti3C2(OH)2 NRs 显示出显着增强的锂离子存储能力,250 次循环后在 100 mA g-1 下获得的优异比容量为 143.4 mA hg-1,优异的循环稳定性和良好的倍率性能,显着优于与母体 Ti3AlC2 相和类似甘蔗的过渡蚀刻产物相比。Ti3C2(OH)2 NRs 优异的电化学性能可归因于其独特的纳米带结构,具有丰富的羟基端基和很少的 Al 原子,这有利于越来越多的锂离子在 Ti3C2( OH)2 NRs 和电子和离子的有效传输。更重要的是,这项研究提供了一种简单、有效、绿色和无毒的无氟蚀刻程序来合成其他更多的 MXenes 纳米带,包括但不限于 Ti3C2(OH)2 NRs,作为先进锂离子电池的有希望的阳极候选物。这促进了越来越多的锂离子在 Ti3C2(OH)2 NRs 的表面活性位点上的吸附和存储以及电子和离子的有效传输。更重要的是,这项研究提供了一种简单、有效、绿色和无毒的无氟蚀刻程序来合成其他更多的 MXenes 纳米带,包括但不限于 Ti3C2(OH)2 NRs,作为先进锂离子电池的有希望的阳极候选物。这促进了越来越多的锂离子在 Ti3C2(OH)2 NRs 的表面活性位点上的吸附和存储以及电子和离子的有效传输。更重要的是,这项研究提供了一种简单、有效、绿色和无毒的无氟蚀刻程序来合成其他更多的 MXenes 纳米带,包括但不限于 Ti3C2(OH)2 NRs,作为先进锂离子电池的有希望的阳极候选物。
更新日期:2019-05-01
down
wechat
bug