当前位置: X-MOL 学术Prog. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface and interface sciences of Li-ion batteries
Progress in Surface Science ( IF 6.4 ) Pub Date : 2017-12-01 , DOI: 10.1016/j.progsurf.2017.10.001
Taketoshi Minato , Takeshi Abe

Abstract The application potential of Li-ion batteries is growing as demand increases in different fields at various stages in energy systems, in addition to their conventional role as power sources for portable devices. In particular, applications in electric vehicles and renewable energy storage are increasing for Li-ion batteries. For these applications, improvements in battery performance are necessary. The Li-ion battery produces and stores electric power from the electrochemical redox reactions between the electrode materials. The interface between the electrodes and electrolyte strongly affects the battery performance because the charge transfer causing the electrode redox reaction begins at this interface. Understanding of the surface structure, electronic structure, and chemical reactions at the electrode–electrolyte interface is necessary to improve battery performance. However, the interface is located between the electrode and electrolyte materials, hindering the experimental analysis of the interface; thus, the physical properties and chemical processes have remained poorly understood until recently. Investigations of the physical properties and chemical processes at the interface have been performed using advanced surface science techniques. In this review, current knowledge and future research prospects regarding the electrode–electrolyte interface are described for the further development of Li-ion batteries.

中文翻译:

锂离子电池的表面和界面科学

摘要 锂离子电池除了作为便携式设备的传统电源外,随着能源系统各个阶段不同领域的需求增加,其应用潜力也在不断增长。特别是锂离子电池在电动汽车和可再生能源存储中的应用正在增加。对于这些应用,电池性能的改进是必要的。锂离子电池通过电极材料之间的电化学氧化还原反应产生和储存电能。电极和电解质之间的界面强烈影响电池性能,因为引起电极氧化还原反应的电荷转移开始于该界面。了解表面结构、电子结构、电极-电解质界面的化学反应对于提高电池性能是必要的。然而,界面位于电极和电解质材料之间,阻碍了界面的实验分析;因此,直到最近,人们对物理特性和化学过程仍知之甚少。已经使用先进的表面科学技术对界面处的物理特性和化学过程进行了调查。在这篇综述中,描述了关于电极-电解质界面的当前知识和未来研究前景,以促进锂离子电池的进一步发展。直到最近,人们对物理特性和化学过程仍知之甚少。已经使用先进的表面科学技术对界面处的物理特性和化学过程进行了调查。在这篇综述中,描述了关于电极-电解质界面的当前知识和未来研究前景,以促进锂离子电池的进一步发展。直到最近,人们对物理特性和化学过程仍知之甚少。已经使用先进的表面科学技术对界面处的物理特性和化学过程进行了调查。在这篇综述中,描述了关于电极-电解质界面的当前知识和未来研究前景,以促进锂离子电池的进一步发展。
更新日期:2017-12-01
down
wechat
bug