当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pilot-scale regeneration of wastewater through intensified sulfate radical-based advanced oxidation processes (PMS/UV-A, PMS/H2O2/UV-A, and PMS/O3): Inactivation of bacteria and mechanistic considerations
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2023-06-02 , DOI: 10.1016/j.cej.2023.143859
S. Guerra-Rodríguez, E. Rodríguez, J. Rodríguez-Chueca

This research addresses the application of advanced oxidation processes (AOPs) for wastewater reclamation at pilot scale, one of the main limitations usually observed in this type of technology. Although interest in sulfate radical-based AOPs (SR-AOPs) has increased considerably in recent years, pilot-scale application studies are very scarce. The generation of free radicals by activation of peroxymonosulfate (PMS) can be enhanced by the introduction of UV-A radiation, or other oxidants such as hydrogen peroxide (H2O2) or ozone (O3), increasing the efficiency of the processes with lower reagent consumption.

The combination of 0.5 mM PMS and 0.25 g·h−1 O3 was the fastest process in inactivation of Enterococcus faecalis, achieving inactivation in less than 45 min. Significant synergies were also observed for the combination of PMS, H2O2 and UV-A radiation, achieving total inactivation in less than 120 min, a performance significantly lower than that of the PMS/O3 system. Mechanistic studies showed that the sulfate radical (SO4•-) was responsible for bacterial inactivation in the PMS/O3 system, while in the PMS/H2O2/UV-A system the predominant species varies according to the molar ratio of the oxidants. Thus, the hydroxyl radical (OH) is predominant in a 1:1 ratio, and SO4•- is predominant in a 1:3 ratio. This phenomenon occurs because an excess of PMS acts as a sink for radicals, preventing their interaction with bacteria.

The treatments studied have been shown to be effective in the simultaneous elimination of several pathogenic microorganisms such as Enterococcus faecalis, Escherichia coli, and Staphylococcus aureus, making this technology an alternative to conventional disinfection treatments.



中文翻译:

通过强化硫酸根基高级氧化工艺(PMS/UV-A、PMS/H2O2/UV-A 和 PMS/O3)对废水进行中试再生:细菌灭活和机理考虑

本研究解决了高级氧化工艺 (AOP) 在中试规模废水回收中的应用,这是此类技术中通常观察到的主要局限之一。尽管近年来对基于硫酸根的 AOPs (SR-AOPs) 的兴趣大大增加,但中试规模的应用研究非常稀缺。通过引入 UV-A 辐射或过氧化氢 (H 2 O 2 ) 或臭氧( O 3 )等其他氧化剂可以增强通过激活过氧单硫酸盐 (PMS) 产生的自由基,从而提高过程效率试剂消耗量更低。

0.5 mM PMS 和 0.25 g·h -1 O 3的组合是粪肠球菌灭活过程中最快的过程,在不到 45 分钟内实现灭活。PMS、H 2 O 2和 UV-A 辐射的组合也观察到了显着的协同作用,在不到 120 分钟的时间内实现了完全灭活,这一性能明显低于 PMS/O 3系统。机理研究表明,硫酸根 (SO 4 •- ) 是导致 PMS/O 3系统中细菌失活的原因,而在 PMS/H 2 O 2中/UV-A 系统的主要物种根据氧化剂的摩尔比而变化。因此,羟基自由基 ( OH) 以 1:1 的比例占主导地位,而 SO 4 •-以 1:3 的比例占主导地位。这种现象的发生是因为过量的 PMS 充当了自由基的吸收槽,阻止了它们与细菌的相互作用。

所研究的处理方法已被证明可有效同时消除粪肠球菌大肠杆菌金黄色葡萄球菌等多种致病微生物,使该技术成为传统消毒处理的替代方法。

更新日期:2023-06-02
down
wechat
bug