当前位置: X-MOL 学术ACS Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deep Electroreductive Chemistry: Harnessing Carbon- and Silicon-Based Reactive Intermediates in Organic Synthesis
ACS Catalysis ( IF 12.9 ) Pub Date : 2023-05-31 , DOI: 10.1021/acscatal.3c01174
Wen Zhang 1 , Weiyang Guan 1 , Jesus I. Martinez Alvarado 1 , Luiz F. T. Novaes 1 , Song Lin 1
Affiliation  

Figure 1. Electroreductive synthesis. (A) Select early examples of electroreductive reactions. (B) Select fine chemicals produced by reductive electrolysis in industry. Figure 2. Electroreductive chemistry of alkyl halides and chlorosilanes contributed by our group. Figure 3. Strategies and select reagents used to generate alkyl radicals from alkyl halides. Figure 4. Electroreductive carbofunctionalization of alkenes with alkyl bromides. (27) (A) Reaction design principle. (B) Reduction potentials of some relevant reagents and intermediates. Figure 5. Electroreductive carbofunctionalization of alkenes: reaction development. (A) Optimal reaction condition. (B) Representative reaction scope. (C) Synthesis of precursor of bioactive molecules. Figure 6. Electrochemically driven XEC reaction. (38) (A) Reaction design principle. (B) Initial trial with unactivated alkyl bromides: alkyl radical reduction is in competition with radical side reactions. (C) The use of anion stabilizing substituents promotes the desired reactivity. Figure 7. Electrochemical XEC of alkyl halides: reaction development. (A) Optimal reaction conditions. (B) Representative reaction scope. (C) Formal benzylic C–H bond methylation. Figure 8. (A, B) Control experiments to probe the mechanism of electrochemical XEC of alkyl halides, (C) synthesis scale-up, and (D) development of deuterodehalogenation. (41) Figure 9. Electroreductive disilylation of alkenes. (59) (A) Reaction design principle. (B) Optimal reaction conditions. (C) Representative reaction scope. Figure 10. (A) Radical and anion probe substrates used to investigate the mechanism of reductive alkene disilylation. (B) Extension of this reactivity to other substrates. Figure 11. Electroreductive silyl cross-electrophile coupling. (68) (A) Reaction design of electroreductive disilylation of alkenes and DFT calculations support for the proposed mechanism. (B) Optimal reaction conditions. (C) Representative reaction scope. Figure 12. Extension of electroreductive silyl cross-electrophile coupling to oligosilanes and cyclic silanes. (A) Reaction design principle. (B) Optimal reaction conditions. (C) Representative reaction scope. W.Z. and W.G. contributed equally. Financial support was provided by NIGMS (R01GM130928). We thank Katie Meihaus, Andrew J. Ressler, Samson Zacate, and Minsoo Ju for manuscript editing. We dedicate this paper to Prof. Guosheng Liu at SIOC on the occasion of his 50th birthday. This article references 78 other publications. For representative reviews, see: For a select example of the mechanistic study of Ni catalysis towards alkyl halide activation, see: For representative examples, see: For representative reviews, see: For select recent examples, see: For representative examples of the XEC reaction with two alkyl halides, see: For the XEC reaction with other electrophiles for C(sp3)–(sp3) bond formations, see: For representative examples, see: Few electrochemical reductions of chlorosilanes towards C–Si bond formations have been reported via an anion mechanism: A review on activation of disilanes: Synthesis of structurally similar compounds have been reported, which require addition of reagents like 18-crown-ether: For representative examples, see: For representative examples, see: This article has not yet been cited by other publications. Figure 1. Electroreductive synthesis. (A) Select early examples of electroreductive reactions. (B) Select fine chemicals produced by reductive electrolysis in industry. Figure 2. Electroreductive chemistry of alkyl halides and chlorosilanes contributed by our group. Figure 3. Strategies and select reagents used to generate alkyl radicals from alkyl halides. Figure 4. Electroreductive carbofunctionalization of alkenes with alkyl bromides. (27) (A) Reaction design principle. (B) Reduction potentials of some relevant reagents and intermediates. Figure 5. Electroreductive carbofunctionalization of alkenes: reaction development. (A) Optimal reaction condition. (B) Representative reaction scope. (C) Synthesis of precursor of bioactive molecules. Figure 6. Electrochemically driven XEC reaction. (38) (A) Reaction design principle. (B) Initial trial with unactivated alkyl bromides: alkyl radical reduction is in competition with radical side reactions. (C) The use of anion stabilizing substituents promotes the desired reactivity. Figure 7. Electrochemical XEC of alkyl halides: reaction development. (A) Optimal reaction conditions. (B) Representative reaction scope. (C) Formal benzylic C–H bond methylation. Figure 8. (A, B) Control experiments to probe the mechanism of electrochemical XEC of alkyl halides, (C) synthesis scale-up, and (D) development of deuterodehalogenation. (41) Figure 9. Electroreductive disilylation of alkenes. (59) (A) Reaction design principle. (B) Optimal reaction conditions. (C) Representative reaction scope. Figure 10. (A) Radical and anion probe substrates used to investigate the mechanism of reductive alkene disilylation. (B) Extension of this reactivity to other substrates. Figure 11. Electroreductive silyl cross-electrophile coupling. (68) (A) Reaction design of electroreductive disilylation of alkenes and DFT calculations support for the proposed mechanism. (B) Optimal reaction conditions. (C) Representative reaction scope. Figure 12. Extension of electroreductive silyl cross-electrophile coupling to oligosilanes and cyclic silanes. (A) Reaction design principle. (B) Optimal reaction conditions. (C) Representative reaction scope. This article references 78 other publications. For representative reviews, see: For a select example of the mechanistic study of Ni catalysis towards alkyl halide activation, see: For representative examples, see: For representative reviews, see: For select recent examples, see: For representative examples of the XEC reaction with two alkyl halides, see: For the XEC reaction with other electrophiles for C(sp3)–(sp3) bond formations, see: For representative examples, see: Few electrochemical reductions of chlorosilanes towards C–Si bond formations have been reported via an anion mechanism: A review on activation of disilanes: Synthesis of structurally similar compounds have been reported, which require addition of reagents like 18-crown-ether: For representative examples, see: For representative examples, see:

中文翻译:

深层电还原化学:在有机合成中利用碳基和硅基反应中间体

图 1. 电还原合成。(A) 选择电还原反应的早期例子。(B)选择工业上采用还原电解法生产的精细化学品。图2.我们课题组贡献的卤代烷和氯硅烷的电还原化学。图 3. 用于从卤代烷生成烷基的策略和选择试剂。图 4. 烯烃与烷基溴的电还原碳官能化。(27) (A) 反应设计原理。(B)一些相关试剂和中间体的还原电位。图 5. 烯烃的电还原碳官能化:反应进展。(A) 最佳反应条件。(B) 代表性反应范围。(C) 生物活性分子前体的合成。图 6.电化学驱动的 XEC 反应。(38) (A) 反应设计原理。(B) 使用未活化的烷基溴进行初步试验:烷基自由基还原与自由基副反应竞争。(C) 阴离子稳定取代基的使用促进了所需的反应性。图 7. 烷基卤化物的电化学 XEC:反应进展。(A) 最佳反应条件。(B) 代表性反应范围。(C) 正式的苄基 C-H 键甲基化。图 8. (A, B) 探索烷基卤化物电化学 XEC 机制的对照实验,(C) 合成放大,以及 (D) 氘代脱卤的发展。(41) 图 9. 烯烃的电还原二甲硅烷基化。(59) (A) 反应设计原理。(B) 最佳反应条件。(C) 代表性反应范围。图 10. (A) 用于研究还原烯烃二甲硅烷基化机理的自由基和阴离子探针底物。(B) 将这种反应性扩展到其他底物。图 11. 电还原甲硅烷基交叉亲电子偶联。(68) (A) 烯烃电还原二甲硅烷基化的反应设计和 DFT 计算支持所提出的机理。(B) 最佳反应条件。(C) 代表性反应范围。图 12. 电还原甲硅烷基交叉亲电试剂偶联至低聚硅烷和环状硅烷的扩展。(A) 反应设计原理。(B) 最佳反应条件。(C) 代表性反应范围。WZ 和 WG 的贡献相等。NIGMS (R01GM130928) 提供财务支持。我们感谢 Katie Meihaus、Andrew J. Ressler、Samson Zacate 和 Minsoo Ju 的手稿编辑。值此之际,谨将此论文献给上海有机所刘国胜教授 50 岁生日。本文引用了 78 篇其他出版物。3 )–(sp 3)键形成,请参见:有关代表性示例,请参见:通过阴离子机制很少有氯硅烷对 C-Si 键形成的电化学还原报道:乙硅烷活化综述:已报道结构相似化合物的合成,这需要添加18-冠醚等试剂: 代表性实例,参见: 代表性实例,参见: 本文尚未被其他出版物引用。图 1. 电还原合成。(A) 选择电还原反应的早期例子。(B)选择工业上采用还原电解法生产的精细化学品。图2.我们课题组贡献的卤代烷和氯硅烷的电还原化学。图 3. 用于从卤代烷生成烷基的策略和选择试剂。图 4. 烯烃与烷基溴的电还原碳官能化。(27) (A) 反应设计原理。(B)一些相关试剂和中间体的还原电位。图 5. 烯烃的电还原碳官能化:反应进展。(A) 最佳反应条件。(B) 代表性反应范围。(C) 生物活性分子前体的合成。图 6.电化学驱动的 XEC 反应。(38) (A) 反应设计原理。(B) 使用未活化的烷基溴进行初步试验:烷基自由基还原与自由基副反应竞争。(C) 阴离子稳定取代基的使用促进了所需的反应性。图 7. 烷基卤化物的电化学 XEC:反应进展。(A) 最佳反应条件。(B) 代表性反应范围。(C) 正式的苄基 C-H 键甲基化。图 8.(A,B) 对照实验探索烷基卤化物的电化学 XEC 机制,(C) 合成放大,以及 (D) 氘代脱卤的发展。(41) 图 9. 烯烃的电还原二甲硅烷基化。(59) (A) 反应设计原理。(B) 最佳反应条件。(C) 代表性反应范围。图 10. (A) 用于研究还原烯烃二甲硅烷基化机理的自由基和阴离子探针底物。(B) 将这种反应性扩展到其他底物。图 11. 电还原甲硅烷基交叉亲电子偶联。(68) (A) 烯烃电还原二甲硅烷基化的反应设计和 DFT 计算支持所提出的机理。(B) 最佳反应条件。(C) 代表性反应范围。图 12. 电还原甲硅烷基交叉亲电试剂偶联至低聚硅烷和环状硅烷的扩展。(A) 反应设计原理。(B) 最佳反应条件。(C) 代表性反应范围。本文引用了 78 篇其他出版物。有关代表性评论,请参阅: 有关 Ni 催化烷基卤化物活化的机理研究的精选示例,请参阅: 有关代表性示例,请参阅: 有关代表性评论,请参阅: 有关精选的最新示例,请参阅: 有关 XEC 反应的代表性示例与两个烷基卤化物的反应,请参见: 对于 C(sp3 )–(sp 3 ) 键形成,请参阅: 对于代表性示例,请参阅: 通过阴离子机制很少有氯硅烷电化学还原形成 C-Si 键的报道:乙硅烷活化综述:结构相似化合物的合成已报道,需要添加 18-冠醚等试剂: 代表性实例,参见: 代表性实例,参见:
更新日期:2023-05-31
down
wechat
bug