当前位置: X-MOL 学术J. Hazard. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Graphene as a rational interface for enhanced adsorption of microcystin-LR from water
Journal of Hazardous Materials ( IF 13.6 ) Pub Date : 2023-05-30 , DOI: 10.1016/j.jhazmat.2023.131737
Jesse L Roberts 1 , Sarah Grace Zetterholm 1 , Luke Gurtowski 1 , Pu Ashvin I Fernando 2 , Angela Evans 1 , Justin Puhnaty 1 , Kevin M Wyss 3 , James M Tour 4 , Brianna Fernando 1 , Glen Jenness 1 , Audie Thompson 1 , Chris Griggs 1
Affiliation  

Cyanotoxins such as microcystin-LR (MC-LR) represent a global environmental threat to ecosystems and drinking water supplies. The study investigated the direct use of graphene as a rational interface for removal of MC-LR via interactions with the aromatic ring of the ADDA1 chain of MC-LR and the sp2 hybridized carbon network of graphene. Intra-particle diffusion model fit indicated the high mesoporosity of graphene provided significant enhancements to both adsorption capacities and kinetics when benchmarked against microporous granular activated carbon (GAC). Graphene showed superior MC-LR adsorption capacity of 75.4 mg/g (Freundlich model) compared to 0.982 mg/g (Langmuir model) for GAC. Sorption kinetic studies showed graphene adsorbs 99% of MC-LR in 30 min, compared to zero removal for GAC after 24 hr using the same MC-LR concentration. Density functional theory (DFT), calculations showed that postulated π-based interactions align well with the NMR-based experimental work used to probe primary interactions between graphene and MC-LR adduct. This study proved that π-interactions between the aromatic ring on MC-LR and graphene sp2 orbitals are a dominant interaction. With rapid kinetics and adsorption capacities much higher than GAC, it is anticipated that graphene will offer a novel molecular approach for removal of toxins and emerging contaminants with aromatic systems.



中文翻译:

石墨烯作为增强水中微囊藻毒素-LR吸附的合理界面

微囊藻毒素-LR (MC-LR) 等蓝藻毒素对生态系统和饮用水供应构成全球环境威胁。该研究研究了直接使用石墨烯作为合理界面,通过与 MC-LR 的 ADDA 1链的芳环和石墨烯的 sp 2杂化碳网络的相互作用来去除 MC-LR。颗粒内扩散模型拟合表明,与微孔颗粒活性炭(GAC)相比,石墨烯的高介孔率显着增强了吸附能力和动力学。石墨烯表现出优异的 MC-LR 吸附能力,为 75.4 mg/g(Freundlich 模型),而 GAC 为 0.982 mg/g(Langmuir 模型)。吸附动力学研究表明,石墨烯在 30 分钟内吸附了 99% 的 MC-LR,而使用相同 MC-LR 浓度的 GAC 在 24 小时后吸附量为零。密度泛函理论 (DFT) 计算表明,假设的基于 π 的相互作用与用于探测石墨烯和 MC-LR 加合物之间主要相互作用的基于 NMR 的实验工作非常吻合。这项研究证明MC-LR上的芳环和石墨烯sp 2轨道之间的π相互作用是主要的相互作用。凭借比 GAC 高得多的快速动力学和吸附能力,预计石墨烯将提供一种新颖的分子方法,用于通过芳香系统去除毒素和新出现的污染物。

更新日期:2023-05-30
down
wechat
bug