当前位置: X-MOL 学术Nanophotonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sustainable chemistry with plasmonic photocatalysts
Nanophotonics ( IF 7.5 ) Pub Date : 2023-05-29 , DOI: 10.1515/nanoph-2023-0149
Lin Yuan 1 , Briley B. Bourgeois 1 , Claire C. Carlin 2 , Felipe H. da Jornada 1, 3 , Jennifer A. Dionne 1, 4
Affiliation  

There is a pressing global need to increase the use of renewable energy sources and limit greenhouse gas emissions. Towards this goal, highly efficient and molecularly selective chemical processes that operate under mild conditions are critical. Plasmonic photocatalysis uses optically-resonant metallic nanoparticles and their resulting plasmonic, electronic, and phononic light-matter interactions to drive chemical reactions. The promise of simultaneous high-efficiency and product-selective reactions with plasmon photocatalysis provides a compelling opportunity to rethink how chemistry is achieved. Plasmonic nanoparticles serve as nanoscale ‘antennas’ that enable strong light–matter interactions, surpassing the light-harvesting capabilities one would expect purely from their size. Complex composite structures, combining engineered light harvesters with more chemically active components, are a focal point of current research endeavors. In this review, we provide an overview of recent advances in plasmonic catalysis. We start with a discussion of the relevant mechanisms in photochemical transformations and explain hot-carrier generation and distributions from several ubiquitous plasmonic antennae. Then we highlight three important types of catalytic processes for sustainable chemistry: ammonia synthesis, hydrogen production and CO2 reduction. To help elucidate the reaction mechanism, both state-of-art electromagnetic calculations and quantum mechanistic calculations are discussed. This review provides insights to better understand the mechanism of plasmonic photocatalysis with a variety of metallic and composite nanostructures toward designing and controlling improved platforms for green chemistry in the future.

中文翻译:

等离子体光催化剂的可持续化学

全球迫切需要增加可再生能源的使用并限制温室气体排放。为实现这一目标,在温和条件下运行的高效和分子选择性化学过程至关重要。等离子体光催化使用光学共振金属纳米粒子及其产生的等离子体、电子和声子光-物质相互作用来驱动化学反应。等离子体光催化同时进行高效和产品选择性反应的前景为重新思考如何实现化学提供了一个令人信服的机会。等离激元纳米粒子充当纳米级“天线”,可实现强烈的光-物质相互作用,超越了人们单纯从尺寸上所期望的光捕获能力。复杂的复合结构,将工程光采集器与更多化学活性成分相结合,是当前研究工作的重点。在这篇综述中,我们概述了等离子体催化的最新进展。我们首先讨论光化学转化的相关机制,并解释几种普遍存在的等离子体天线的热载流子生成和分布。然后我们强调可持续化学的三种重要催化过程类型:氨合成、制氢和 CO 我们首先讨论光化学转化的相关机制,并解释几种普遍存在的等离子体天线的热载流子生成和分布。然后我们强调可持续化学的三种重要催化过程类型:氨合成、制氢和 CO 我们首先讨论光化学转化的相关机制,并解释几种普遍存在的等离子体天线的热载流子生成和分布。然后我们强调可持续化学的三种重要催化过程类型:氨合成、制氢和 CO2个减少。为了帮助阐明反应机制,讨论了最先进的电磁计算和量子力学计算。这篇综述提供了一些见解,以更好地理解等离子体光催化与各种金属和复合纳米结构的机制,以设计和控制未来绿色化学的改进平台。
更新日期:2023-05-29
down
wechat
bug