当前位置: X-MOL 学术Adv. Theory Simul. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CsPbI3 Based All-Inorganic Perovskite Solar Cells: Further Performance Enhancement of the Electron Transport Layer-Free Structure from Device Simulation
Advanced Theory and Simulations ( IF 3.3 ) Pub Date : 2023-05-16 , DOI: 10.1002/adts.202200805
Zhiwei Qin, Hao Zhou, Site Li, Junxin Xiang, Ziyu Guan, Hai Zhang, Xinxia Ma, Meilin Zhang, Jiang Wu, Haoyan Yang

Cesium lead iodide (CsPbI3) has attracted a great deal of attention as an absorption layer material for perovskite solar cells (PSCs) with high stability and suitable band gap (1.72 eV). In response to the problems of defect-induced nonradiative compounding and voltage loss caused by the common perovskite layer, the common strategies of interfacial engineering, altering crystal equivalence, and other modifications involve more complex processes and higher fabrication costs. In order to simplify the process and save costs, this work has omitted the electron transport layer (ETL), while still maintaining a high power conversion efficiency (PCE). This work has simulated PSCs with CsPbI3 (electron transport layer free) and have matched Cu2O as the most suitable hole transport layer (HTL) material. By simulating and optimizing the thickness and defect density of perovskite absorption layer and the defect density of interface defect layer (IDL1, IDL2), and determining the most suitable operating temperature, the PCE of the device can reach 18.8%, which is consistent with the experimental data. The asymmetric effect of the interface defect layer obtained in this work is similar to previous research reports. This research provides an economical solution for high-performance inorganic perovskite solar cells.

中文翻译:

基于CsPbI3的全无机钙钛矿太阳能电池:通过器件模拟进一步增强无电子传输层结构的性能

碘化铯铅(CsPbI 3)作为钙钛矿太阳能电池(PSC)的吸收层材料,具有高稳定性和合适的带隙(1.72 eV),引起了广泛的关注。针对普通钙钛矿层引起的缺陷引起的非辐射复合和电压损失的问题,常见的界面工程、改变晶体等效性和其他修饰策略涉及更复杂的工艺和更高的制造成本。为了简化工艺并节省成本,这项工作省略了电子传输层(ETL),同时仍然保持较高的功率转换效率(PCE)。这项工作模拟了具有 CsPbI 3(无电子传输层)的 PSC,并匹配了 Cu 2O作为最合适的空穴传输层(HTL)材料。通过模拟和优化钙钛矿吸收层的厚度和缺陷密度以及界面缺陷层(IDL1、IDL2)的缺陷密度,并确定最合适的工作温度,器件的PCE可以达到18.8%,与实验数据。本工作获得的界面缺陷层的不对称效应与之前的研究报告类似。这项研究为高性能无机钙钛矿太阳能电池提供了一种经济的解决方案。
更新日期:2023-05-16
down
wechat
bug