当前位置: X-MOL 学术Energy Storage Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multilayer design of core–shell nanostructure to protect and accelerate sulfur conversion reaction
Energy Storage Materials ( IF 20.4 ) Pub Date : 2023-05-16 , DOI: 10.1016/j.ensm.2023.102818
Jae Ho Kim, Dong Yoon Park, Jae Seo Park, Minho Shin, Jae Wook Kim, Seo Mi Yang, Chong Rae Park, Seung Jae Yang

Although a core–shell design has been suggested to maximize reversible redox reaction of conversion–type electrode materials inside a shell, it is challenging to fulfill the complicated prerequisites collectively. This paper proposes a rational core–shell design composed of single–atom catalytic and protective multilayers for sulfur conversion reaction. A hydrogen bond–based supramolecular network incorporates Fe ions by metal–phenolic coordination, accelerating sluggish kinetics. The polypyrrole layer protects the entire structure to suppress the migration of polysulfides and withstand large volume changes. Comprehensive investigation demonstrates that core–shell sulfur nanostructures preserve the structural integrity and electrocatalytic effect during discharge/charge. The resulting electrodes enable outstanding rate capability and stable cycling performance. Furthermore, the areal capacity of higher sulfur loading cells surpasses current Li–ion batteries even at 1 C. This work reactivates the core–shell strategy as a design guideline for viable next–generation electrode materials.



中文翻译:

核壳纳米结构的多层设计保护和加速硫转化反应

尽管有人建议采用核壳设计来最大化壳内转换型电极材料的可逆氧化还原反应,但同时满足复杂的先决条件具有挑战性。本文提出了一种合理的核壳设计,由单原子催化层和多层保护层组成,用于硫转化反应。基于氢键的超分子网络通过金属-酚配位结合 Fe 离子,加速缓慢动力学。聚吡咯层保护整个结构以抑制多硫化物的迁移并承受大的体积变化。综合研究表明,核壳硫纳米结构在放电/充电过程中保持结构完整性和电催化作用。所得电极具有出色的倍率性能和稳定的循环性能。此外,即使在 1 C 时,高硫负载电池的面积容量也超过了目前的锂离子电池。这项工作重新激活了核壳策略,作为可行的下一代电极材料的设计指南。

更新日期:2023-05-20
down
wechat
bug