当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A sandwich-like flexible nanofiber device boosts moisture induced electricity generation for power supply and multiple sensing applications
Nano Energy ( IF 17.6 ) Pub Date : 2023-05-13 , DOI: 10.1016/j.nanoen.2023.108529
Hao Zheng , Anwei Zhou , Yongshuang Li , Xiaofeng Chen , Yingxin Chen , Yurui Xu , Yao Li , Haixiong Ge , Xinghai Ning

Moisture-electricity generators (MEGs) are emerging as an attractive sustainable power supply due to their clean energy harvesting and conversion. However, there still remain some challenges in the development of high-performance and practical MEGs. Herein, we develop a novel sulfonate-polyaniline-bifunctionalized lignin (SAlignin), which can be incorporated into additive polyacrylonitrile for engineering electrospun nanofiber membrane (BioMem) to improve moisture power generation. To achieve maximal electric conversion efficiency, a flexible sandwich-like MEG (fMEG) consisting of an outer bilayer electrode of carbonized BioMem and an inner hygroscopic layer of as-spun BioMem is constructed. The unique structures and compositions endow fMEG with optimal ion diffusion, streaming tendency and surface potential for moisture electric generation. Importantly, phase-field simulation reveals that the interpenetrating network of SAlignin and polyacrylonitrile has good moisture absorption capacity and electricity generation, thereby boosting electric outputs. We identify that fMEG exhibits SAlignin-dose dependent increase in power conversion efficiency, and can generate a stable voltage of 0.28 V and current of 125 nA/cm2. In addition, electric output can be further improved by assembling multiple fMEG units in series or parallel, which is sufficient to power up electronic devices. More excitingly, fMEG can sensitively detect humid wind, and especially harvest the energy from human breath for respiration monitoring. Particularly, fMEG exhibits the potential of real-time monitoring of different human motions, including finger movements, sound waves and neck pulses. Therefore, our study provides new insights for advancing MEGs and related applications.



中文翻译:

一种类似三明治的柔性纳米纤维装置可促进用于电源和多种传感应用的水分感应发电

湿电发电机 (MEG) 因其清洁能源收集和转换而成为一种有吸引力的可持续电源。然而,在开发高性能和实用的 MEG 方面仍然存在一些挑战。在此,我们开发了一种新型磺酸盐-聚苯胺-双功能化木质素 (SAlignin),可将其掺入添加剂聚丙烯腈中,用于工程电纺纳米纤维膜 (BioMem) 以提高水分发电。为了实现最大的电转换效率,构建了一种柔性三明治状 MEG (fMEG),其由碳化 BioMem 的外部双层电极和初纺 BioMem 的内部吸湿层组成。独特的结构和成分赋予 fMEG 最佳的离子扩散、流动趋势和湿气发电的表面电位。重要的是,相场模拟揭示了 SALignin 和聚丙烯腈的互穿网络具有良好的吸湿能力和发电能力,从而提高了电力输出。我们确定 fMEG 在功率转换效率方面表现出 SALignin 剂量依赖性增加,并且可以产生 0.28 V 的稳定电压和 125 nA/cm 的电流2 . 此外,通过串联或并联组装多个fMEG单元可以进一步提高电输出,这足以为电子设备供电。更令人兴奋的是,fMEG 可以灵敏地检测潮湿的风,特别是从人体呼吸中收集能量用于呼吸监测。特别是,fMEG 展示了实时监测不同人体运动的潜力,包括手指运动、声波和颈部脉搏。因此,我们的研究为推进 MEG 和相关应用提供了新的见解。

更新日期:2023-05-13
down
wechat
bug