当前位置: X-MOL 学术Plant Biotech. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Metabolic engineering and mechanical investigation of enhanced plant autoluminescence
Plant Biotechnology Journal ( IF 13.8 ) Pub Date : 2023-05-08 , DOI: 10.1111/pbi.14068
Peng Zheng 1, 2 , Jieyu Ge 1 , Jiayi Ji 1 , Jingling Zhong 1, 3 , Hongyu Chen 1 , Daren Luo 1 , Wei Li 1, 2 , Bo Bi 1, 2 , Yongjun Ma 1 , Wanghui Tong 1 , Leiqin Han 1 , Siqi Ma 4 , Yuqi Zhang 5 , Jianping Wu 5 , Yanqiu Zhao 6 , Ronghui Pan 1, 2 , Pengxiang Fan 1 , Mengzhu Lu 6 , Hao Du 1, 2
Affiliation  

The fungal bioluminescence pathway (FBP) was identified from glowing fungi, which releases self-sustained visible green luminescence. However, weak bioluminescence limits the potential application of the bioluminescence system. Here, we screened and characterized a C3′H1 (4-coumaroyl shikimate/quinate 3′-hydroxylase) gene from Brassica napus, which efficiently converts p-coumaroyl shikimate to caffeic acid and hispidin. Simultaneous expression of BnC3′H1 and NPGA (null-pigment mutant in A. nidulans) produces more caffeic acid and hispidin as the natural precursor of luciferin and significantly intensifies the original fungal bioluminescence pathway (oFBP). Thus, we successfully created enhanced FBP (eFBP) plants emitting 3 × 1011 photons/min/cm2, sufficient to illuminate its surroundings and visualize words clearly in the dark. The glowing plants provide sustainable and bio-renewable illumination for the naked eyes, and manifest distinct responses to diverse environmental conditions via caffeic acid biosynthesis pathway. Importantly, we revealed that the biosynthesis of caffeic acid and hispidin in eFBP plants derived from the sugar pathway, and the inhibitors of the energy production system significantly reduced the luminescence signal rapidly from eFBP plants, suggesting that the FBP system coupled with the luciferin metabolic flux functions in an energy-driven way. These findings lay the groundwork for genetically creating stronger eFBP plants and developing more powerful biological tools with the FBP system.

中文翻译:

增强植物自发光的代谢工程和机械研究

真菌生物发光途径(FBP)是从发光真菌中鉴定出来的,该途径释放自我维持的可见绿色发光。然而,微弱的生物发光限制了生物发光系统的潜在应用。在这里,我们从甘蓝型油菜中筛选并鉴定了一个C3'H1(4-香豆酰莽草酸/奎宁酸 3'-羟化酶)基因,该基因能够有效地将对香豆酰莽草酸转化为咖啡酸和组毛蛋白。BnC3'H1NPGA (构巢曲霉中的无效色素突变体)的同时表达会产生更多的咖啡酸和组皮素作为荧光素的天然前体,并显着增强原始真菌生物发光途径 (oFBP)。因此,我们成功地创造了增强型FBP ( eFBP ) 植物,发射 3 × 10 11光子/分钟/cm 2,足以照亮周围环境并在黑暗中清晰地可视化文字。发光植物为肉眼提供可持续和生物可再生的照明,并通过咖啡酸生物合成途径对不同的环境条件表现出独特的反应。重要的是,我们发现, eFBP植物中咖啡酸和组皮素的生物合成源自糖途径,而能量产生系统的抑制剂显着降低了eFBP植物的发光信号,这表明FBP系统与荧光素代谢流相结合以能量驱动的方式发挥作用。这些发现为基因创造更强的eFBP植物和利用 FBP 系统开发更强大的生物工具奠定了基础。
更新日期:2023-05-08
down
wechat
bug