当前位置: X-MOL 学术Int. J. Plasticity › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Shear localization in polycrystalline metal at high-strain rates with dynamic recrystallization: Crystal plasticity modeling and texture effect
International Journal of Plasticity ( IF 9.8 ) Pub Date : 2023-04-18 , DOI: 10.1016/j.ijplas.2023.103616
Wen An, Chuan-zhi Liu, Qi-lin Xiong, Zhenhuan Li, Xicheng Huang, Tao Suo

Shear localization is an important failure mode, or even the dominant mode in metals at high-strain rates. However, it is a great challenge to accurately predict the occurrence and evolution of shear localization in metals at the high-strain rate deformation. Here, a dislocation-based crystal plasticity constitutive model with a crucial mechanism of shear instability, namely dynamic recrystallization, was developed. The evolution equations of dislocation density and grain size in the process of dynamic recrystallization were proposed and incorporated into the new constitutive model. The threshold of the stored energy in crystals was used as the criterion for the occurrence of dynamic recrystallization. Dynamic compression of a nanograin Cu-Al alloy was performed using the crystal plasticity finite element method based on the new constitutive model, and good agreement of the numerical prediction with the existing experimental data validates the new constitutive model. The results show dynamic recrystallization can be a more dominant mechanism for the occurrence of shear instability than thermal softening. In addition, dynamic tension and shear of the Cu-Al alloys with five typical textures were also simulated, showing that both loading mode and texture can significantly affect the formation of shear localization. This work is helpful for us to understand the role of microstructural evolution in the formation of shear localization at high-strain rates and to design the microstructure for artificially controlling or preventing the formation of shear localization.



中文翻译:

具有动态再结晶的高应变率下多晶金属的剪切局部化:晶体塑性建模和纹理效应

局部剪切是一种重要的失效模式,甚至是高应变率下金属的主要失效模式。然而,准确预测金属在高应变率变形下局部剪切的发生和演变是一个巨大的挑战。在这里,开发了一种基于位错的晶体塑性本构模型,该模型具有剪切不稳定的关键机制,即动态再结晶。提出了动态再结晶过程中位错密度和晶粒尺寸的演化方程,并将其纳入新的本构模型。晶体中储存能量的阈值被用作动态再结晶发生的标准。使用基于新本构模型的晶体塑性有限元方法对纳米晶 Cu-Al 合金进行动态压缩,数值预测与现有实验数据的良好一致性验证了新的本构模型。结果表明,与热软化相比,动态再结晶可能是发生剪切不稳定的更主要机制。此外,还模拟了具有五种典型织构的Cu-Al合金的动态拉伸和剪切,表明加载方式和织构均能显着影响剪切局部化的形成。这项工作有助于我们了解微观结构演化在高应变率下剪切局部化形成中的作用,以及设计微观结构以人工控制或防止剪切局部化的形成。结果表明,与热软化相比,动态再结晶可能是发生剪切不稳定的更主要机制。此外,还模拟了具有五种典型织构的Cu-Al合金的动态拉伸和剪切,表明加载方式和织构均能显着影响剪切局部化的形成。这项工作有助于我们了解微观结构演化在高应变率下剪切局部化形成中的作用,以及设计微观结构以人工控制或防止剪切局部化的形成。结果表明,与热软化相比,动态再结晶可能是发生剪切不稳定的更主要机制。此外,还模拟了具有五种典型织构的Cu-Al合金的动态拉伸和剪切,表明加载方式和织构均能显着影响剪切局部化的形成。这项工作有助于我们了解微观结构演化在高应变率下剪切局部化形成中的作用,以及设计微观结构以人工控制或防止剪切局部化的形成。显示加载模式和纹理都会显着影响剪切局部化的形成。这项工作有助于我们了解微观结构演化在高应变率下剪切局部化形成中的作用,以及设计微观结构以人工控制或防止剪切局部化的形成。显示加载模式和纹理都会显着影响剪切局部化的形成。这项工作有助于我们了解微观结构演化在高应变率下剪切局部化形成中的作用,以及设计微观结构以人工控制或防止剪切局部化的形成。

更新日期:2023-04-22
down
wechat
bug