当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unravelling crystal growth of nanoparticles
Nature Nanotechnology ( IF 38.3 ) Pub Date : 2023-03-30 , DOI: 10.1038/s41565-023-01355-w
Binbin Luo 1 , Ziwei Wang 2 , Tine Curk 3 , Garrett Watson 3 , Chang Liu 1 , Ahyoung Kim 1 , Zihao Ou 1 , Erik Luijten 2, 3, 4, 5, 6 , Qian Chen 1, 7, 8, 9
Affiliation  

Crystal growth from nanoscale constituents is a ubiquitous phenomenon in biology, geology and materials science. Numerous studies have focused on understanding the onset of nucleation and on producing high-quality crystals by empirically sampling constituents with different attributes and varying the growth conditions. However, the kinetics of post-nucleation growth processes, an important determinant of crystal morphology and properties, have remained underexplored due to experimental challenges associated with real-space imaging at the nanoscale. Here we report the imaging of the crystal growth of nanoparticles of different shapes using liquid-phase transmission electron microscopy, resolving both lateral and perpendicular growth of crystal layers by tracking individual nanoparticles. We observe that these nanoscale systems exhibit layer-by-layer growth, typical of atomic crystallization, as well as rough growth prevalent in colloidal systems. Surprisingly, the lateral and perpendicular growth modes can be independently controlled, resulting in two mixed crystallization modes that, until now, have received only scant attention. Combining analytical considerations with molecular dynamics and kinetic Monte Carlo simulations, we develop a comprehensive framework for our observations, which are fundamentally determined by the size and shape of the building blocks. These insights unify the understanding of crystal growth across four orders of magnitude in particle size and suggest novel pathways to crystal engineering.



中文翻译:

解开纳米粒子的晶体生长

纳米级成分的晶体生长是生物学、地质学和材料科学中普遍存在的现象。许多研究都集中在了解成核的开始以及通过对具有不同属性和不同生长条件的成分进行经验采样来生产高质量晶体。然而,由于与纳米级真实空间成像相关的实验挑战,成核后生长过程的动力学是晶体形态和性质的重要决定因素,因此仍未得到充分探索。在这里,我们报告了使用液相透射电子显微镜对不同形状纳米颗粒晶体生长的成像,通过跟踪单个纳米颗粒解决了晶体层的横向和垂直生长。我们观察到这些纳米级系统表现出逐层生长,典型的原子结晶,以及胶体系统中普遍存在的粗糙生长。令人惊讶的是,横向和垂直生长模式可以独立控制,从而产生两种混合结晶模式,直到现在,这两种模式还很少受到关注。将分析考虑与分子动力学和动力学蒙特卡罗模拟相结合,我们为我们的观察开发了一个综合框架,这些框架从根本上取决于构建块的大小和形状。这些见解统一了对晶体生长跨越四个数量级的粒径的理解,并提出了晶体工程的新途径。横向和垂直生长模式可以独立控制,从而产生两种混合结晶模式,到目前为止,这两种模式很少受到关注。将分析考虑与分子动力学和动力学蒙特卡罗模拟相结合,我们为我们的观察开发了一个综合框架,这些框架从根本上取决于构建块的大小和形状。这些见解统一了对晶体生长跨越四个数量级的粒径的理解,并提出了晶体工程的新途径。横向和垂直生长模式可以独立控制,从而产生两种混合结晶模式,到目前为止,这两种模式很少受到关注。将分析考虑与分子动力学和动力学蒙特卡罗模拟相结合,我们为我们的观察开发了一个综合框架,这些框架从根本上取决于构建块的大小和形状。这些见解统一了对晶体生长跨越四个数量级的粒径的理解,并提出了晶体工程的新途径。我们为我们的观察开发了一个综合框架,这从根本上取决于构建块的大小和形状。这些见解统一了对晶体生长跨越四个数量级的粒径的理解,并提出了晶体工程的新途径。我们为我们的观察开发了一个综合框架,这从根本上取决于构建块的大小和形状。这些见解统一了对晶体生长跨越四个数量级的粒径的理解,并提出了晶体工程的新途径。

更新日期:2023-03-31
down
wechat
bug