当前位置: X-MOL 学术Mater. Chem. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fast and stable charge transfer at the lithium–sulfide (electrolyte) interface via an in situ solidified Li+-conductive interlayer
Materials Chemistry Frontiers ( IF 7 ) Pub Date : 2023-03-21 , DOI: 10.1039/d3qm00049d
Ya-Hui Wang 1, 2 , Xu-Sheng Zhang 1, 2 , Cai-Cai Li 1, 2 , Hao Zeng 1, 3 , Zhe Chen 4 , Liang Zhang 5 , Jin-Chi Zheng 5 , Yuan Luo 5 , Sen Xin 1, 2 , Yu-Guo Guo 1, 2
Affiliation  

With high Li+ conductivity and mechanical plasticity, sulfide electrolytes such as glassy 75Li2S–25P2S5 (LPS) have become promising solid electrolytes for building rechargeable lithium–metal batteries. However, sulfide electrolytes usually show unstable interfacial electrochemistry versus Li metal, which could cause parasitic reactions and dendrite formation, thus leading to rapid performance fading and battery failure. In this work, we show that, by applying a LiF-rich in situ solidified Li+-conductive interlayer (LCI), the interfacial contact and charge transfer stability between LPS and Li metal are notably improved, which leads to inhibition of electrolyte decomposition and dendrite-free Li plating/stripping at the interface. At room temperature, Li–Li symmetric cells assembled from LCI-modified LPS electrolyte demonstrate stable cycling performance for over 1500 hours at 0.1 mA cm−2, and a high critical current density of up to 5 mA cm−2. This work sheds light on the rational design of the Li–sulfide interface towards practical realization of high-energy solid-state batteries.

中文翻译:

通过原位固化的 Li+- 导电夹层在锂-硫化物(电解质)界面快速稳定地转移电荷

玻璃态 75Li 2 S–25P 2 S 5 (LPS)等硫化物电解质具有高 Li +电导率和机械可塑性,已成为用于构建可充电锂金属电池的有前途的固体电解质。然而,与锂金属相比,硫化物电解质通常表现出不稳定的界面电化学,这可能导致寄生反应和枝晶形成,从而导致性能快速衰减和电池失效。在这项工作中,我们表明,通过应用富含 LiF 的原位固化 Li +-导电夹层(LCI),LPS和锂金属之间的界面接触和电荷转移稳定性得到显着改善,从而抑制了电解质分解和界面处无枝晶的锂沉积/剥离。在室温下,由 LCI 改性的 LPS 电解质组装而成的 Li-Li 对称电池在 0.1 mA cm -2下表现出超过 1500 小时的稳定循环性能,以及高达 5 mA cm -2的高临界电流密度。这项工作阐明了锂-硫化物界面的合理设计,以实际实现高能固态电池。
更新日期:2023-03-21
down
wechat
bug