当前位置: X-MOL 学术ACS Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
WS2 and WS2-ZnO Chemiresistive Gas Sensors: The Role of Analyte Charge Asymmetry and Molecular Size
ACS Sensors ( IF 8.9 ) Pub Date : 2023-03-16 , DOI: 10.1021/acssensors.2c02762
Farman Ullah 1, 2 , Khaled Ibrahim 1, 2 , Kissan Mistry 1, 2 , Abdus Samad 3 , Ahmed Shahin 1, 2 , Joseph Sanderson 4 , Kevin Musselman 1, 2
Affiliation  

We investigate the interaction of various analytes (toluene, acetone, ethanol, and water) possessing different structures, bonding, and molecular sizes with a laser-exfoliated WS2 sensing material in a chemiresistive sensor. The sensor showed a clear response to all analytes, which was significantly enhanced by modifying the WS2 surface. This was achieved by creating WS2-ZnO heterojunctions via the deposition of ZnO nanoparticles on the WS2 surface with a high-throughput, atmospheric-pressure spatial atomic layer deposition system. Water and ethanol produced a much higher response compared to acetone and toluene for both the WS2 and WS2-ZnO sensing mediums. We resolved that the charge-asymmetry points in analyte molecules play a key role in determining the sensor response. High charge-asymmetry points correspond to highly polar bonds (HPBs) in a neutral molecule that have a high probability of interaction with the sensing medium. Our results indicate that the polarity of the HPBs primarily dictates the interaction between the analyte and sensing medium and consequently controls the response of the sensor. Moreover, the size of the analyte molecule was found to affect the sensing response; if two molecules have the same HPBs and are exposed to the same sensing medium, the smaller molecule is likely to produce a higher and faster response. Our study provides a comprehensive picture of analyte–sensor interactions that can help in advancing semiconductor gas sensors, including those based on two-dimensional materials.

中文翻译:

WS2 和 WS2-ZnO 化学电阻气体传感器:分析物电荷不对称性和分子大小的作用

我们研究了化学电阻传感器中具有不同结构、键合和分子大小的各种分析物(甲苯、丙酮、乙醇和水)与激光剥离 WS 2传感材料的相互作用。该传感器对所有分析物均显示出清晰的响应,通过修改 WS 2表面可显着增强这种响应。这是通过使用高通量、大气压空间原子层沉积系统在 WS 2表面沉积 ZnO 纳米粒子来创建 WS 2 -ZnO 异质结来实现的。对于 WS 2和 WS 2,水和乙醇产生的响应比丙酮和甲苯高得多-ZnO 传感介质。我们认为分析物分子中的电荷不对称点在确定传感器响应方面起着关键作用。高电荷不对称点对应于中性分子中的高极性键 (HPB),它们很可能与传感介质相互作用。我们的结果表明,HPB 的极性主要决定了分析物和传感介质之间的相互作用,从而控制了传感器的响应。此外,发现分析物分子的大小会影响传感响应;如果两个分子具有相同的 HPB 并暴露于相同的传感介质,则较小的分子可能会产生更高更快的响应。我们的研究提供了分析物-传感器相互作用的全面图景,有助于推进半导体气体传感器,
更新日期:2023-03-16
down
wechat
bug