当前位置: X-MOL 学术Robot. Comput.-Integr. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Elasto-geometrical error and gravity model calibration of an industrial robot using the same optimized configuration set
Robotics and Computer-Integrated Manufacturing ( IF 10.4 ) Pub Date : 2023-03-13 , DOI: 10.1016/j.rcim.2023.102558
Kenan Deng , Dong Gao , Shoudong Ma , Chang Zhao , Yong Lu

Position error is a significant limitation for industrial robots in high-precision machining and manufacturing. Efficient error measurement and compensation for robots equipped with end-effectors are difficult in industrial environments. This paper proposes a robot calibration method based on an elasto–geometrical error and gravity model. Firstly, a geometric error model was established based on the D-H method, and the gravity and compliance error models were constructed to predict the elastic deformation caused by the self-weight of the robot. Subsequently, the position error model was established by considering the attitude error of the robot flange coordinate system. A two-step robot configuration selection method was developed based on the sequential floating forward selection algorithm to optimize the robot configuration for calibrating the position error and gravity models. Then, the geometric error and compliance coefficient were identified simultaneously based on the hybrid evolution algorithm. The gravity model parameters were identified based on the same algorithm using the joint torque signal provided by the robot controller. Finally, calibration and compensation experiments were conducted on a KR-160 industrial robot equipped with a spindle using a laser tracker and internal robot data. The experimental results show that the robot tool center point error can be significantly improved by using the proposed method.



中文翻译:

使用相同优化配置集的工业机器人的弹性几何误差和重力模型标定

位置误差是工业机器人在高精度加工制造中的一个重要限制。在工业环境中很难对配备末端执行器的机器人进行有效的误差测量和补偿。本文提出了一种基于弹性几何误差和重力模型的机器人标定方法。首先,基于DH方法建立几何误差模型,构建重力和柔量误差模型来预测机器人自重引起的弹性变形。随后,建立了考虑机器人法兰坐标系姿态误差的位置误差模型。基于顺序浮动前向选择算法开发了一种两步机器人配置选择方法,以优化用于校准位置误差和重力模型的机器人配置。然后,基于混合进化算法同时识别几何误差和顺从系数。使用机器人控制器提供的关节扭矩信号,基于相同的算法识别重力模型参数。最后,使用激光跟踪仪和机器人内部数据对配备主轴的 KR-160 工业机器人进行了标定和补偿实验。实验结果表明,使用该方法可以显着改善机器人工具中心点误差。基于混合进化算法同时识别几何误差和顺应系数。使用机器人控制器提供的关节扭矩信号,基于相同的算法识别重力模型参数。最后,使用激光跟踪仪和机器人内部数据对配备主轴的 KR-160 工业机器人进行了标定和补偿实验。实验结果表明,使用该方法可以显着改善机器人工具中心点误差。基于混合进化算法同时识别几何误差和顺应系数。使用机器人控制器提供的关节扭矩信号,基于相同的算法识别重力模型参数。最后,使用激光跟踪仪和机器人内部数据对配备主轴的 KR-160 工业机器人进行了标定和补偿实验。实验结果表明,使用该方法可以显着改善机器人工具中心点误差。使用激光跟踪器和内部机器人数据在配备主轴的 KR-160 工业机器人上进行校准和补偿实验。实验结果表明,使用该方法可以显着改善机器人工具中心点误差。使用激光跟踪器和内部机器人数据在配备主轴的 KR-160 工业机器人上进行校准和补偿实验。实验结果表明,使用该方法可以显着改善机器人工具中心点误差。

更新日期:2023-03-16
down
wechat
bug