当前位置: X-MOL 学术Front. Plant Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Changes and net ecosystem productivity of terrestrial ecosystems and their influencing factors in China from 2000 to 2019
Frontiers in Plant Science ( IF 5.6 ) Pub Date : 2023-03-15 , DOI: 10.3389/fpls.2023.1120064
Yutao Huang 1 , Fang Wang 1 , Lijuan Zhang 1 , Junfang Zhao 2 , Hong Zheng 3 , Fan Zhang 4 , Nan Wang 1 , Jiakai Gu 1 , Yufeng Zhao 1 , Wenshuai Zhang 1
Affiliation  

Changes in net ecosystem productivity (NEP) in terrestrial ecosystems in response to climate warming and land cover changes have been of great concern. In this study, we applied the normalized difference vegetation index (NDVI), average temperature, and sunshine hours to drive the C-FIX model and to simulate the regional NEP in China from 2000 to 2019. We also analyzed the spatial patterns and the spatiotemporal variation characteristics of the NEP of terrestrial ecosystems and discussed their main influencing factors. The results showed that (1) the annual average NEP of terrestrial ecosystems in China from 2000 to 2019 was 1.08 PgC, exhibiting a highly significant increasing trend with a rate of change of 0.83 PgC/10 y. The terrestrial ecosystems in China remained as carbon sinks from 2000 to 2019, and the carbon sink capacity increased significantly. The NEP of the terrestrial ecosystem increased by 65% during 2015–2019 compared to 2000–2004 (2) There was spatial differences in the NEP distribution of the terrestrial ecosystems in China from 2000–2019. Taking the line along the Daxinganling-Yin Mountains-Helan Mountains-Transverse Range as the boundary, the NEP was significantly higher in the eastern part than in the western part. Among them, the NEP was positive (carbon sink) in northeastern, central, and southern China, and negative (carbon source) in parts of northwestern China and the Tibet Autonomous Region. The spatial variation of NEP in terrestrial ecosystems increased from 2000 to 2009. The areas with a significant increase accounted for 45.85% and were mainly located in the central and southwestern regions. (3) The simulation results revealed that vegetation changes and CO2 concentration changes both contributed to the increase in the NEP in China, contributing 85.96% and 36.84%, respectively. The vegetation changes were the main factor causing the increase in the NEP. The main contribution of this study is to further quantify the NEP of terrestrial ecosystems in China and identify the influencing factors that caused these changes.
更新日期:2023-03-15
down
wechat
bug