当前位置: X-MOL 学术Carbon › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Graphene-based magnetic composite foam with hierarchically porous structure for efficient microwave absorption
Carbon ( IF 10.9 ) Pub Date : 2023-03-01 , DOI: 10.1016/j.carbon.2023.02.066
Shuangshuang Li, Tiantian Ma, Zheyuan Chai, Zihang Zhang, Mingyang Zhu, Xinwei Tang, Xu Zhao, Yezi Lu, Qianqian Lan, Zhenyu Wang, Feng He, Zicheng Wang, Tianxi Liu

In the design of microwave absorbing materials, synergistically optimizing the relationship between impedance matching and attenuation constant remains a great challenge. In this work, a hierarchically porous graphene/iron trioxide magnetic composite foam (GMF) is successfully constructed by an electrostatic assembly of metal-organic frameworks (MOF) in reduced graphene oxide skeletons and subsequent annealing treatment. As a unique template, the in-situ pyrolysis of MOF facilitates the transition from flake-like MOF to anisotropic porous magnetic nanosheet (Fe2O3), promoting the composites to break Snoek's limitation. The combination between magnetic nanosheets and conductive graphene skeletons can further optimize the impedance gradient and attenuation constant of those foams. More importantly, the successful construction of hierarchically porous magnetic foam from micro-to nano-sized pores effectively induces the generation of huge multiple scattering and defect polarization. As a result, more incident electromagnetic waves thus are allowed to enter the materials and dissipate as much as possible after entering the foam, endowing the composite foam with an excellent absorption capacity (−60.13 dB) and bandwidth (6.23 GHz).



中文翻译:

具有分级多孔结构的石墨烯基磁性复合泡沫可有效吸收微波

在微波吸收材料的设计中,协同优化阻抗匹配与衰减常数之间的关系仍然是一个巨大的挑战。在这项工作中,通过在还原的氧化石墨烯骨架中静电组装金属有机框架(MOF)和随后的退火处理,成功地构建了分级多孔石墨烯/三氧化铁磁性复合泡沫(GMF)。作为一种独特的模板,MOF 的原位热解促进了从片状 MOF 到各向异性多孔磁性纳米片(Fe 2 O 3), 促进复合材料打破 Snoek 的限制。磁性纳米片和导电石墨烯骨架的结合可以进一步优化这些泡沫的阻抗梯度和衰减常数。更重要的是,从微米级到纳米级孔隙的分级多孔磁性泡沫的成功构建有效地诱导了巨大的多重散射和缺陷极化的产生。结果,更多的入射电磁波因此被允许进入材料并在进入泡沫后尽可能地消散,从而赋予复合泡沫优异的吸收能力(-60.13 dB)和带宽(6.23 GHz)。

更新日期:2023-03-01
down
wechat
bug