当前位置: X-MOL 学术Aerosp. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Aerodynamic and structural multidisciplinary optimization design method of fan rotors based on blade curvature constraints
Aerospace Science and Technology ( IF 5.6 ) Pub Date : 2023-02-27 , DOI: 10.1016/j.ast.2023.108187
Zhaoyun Song, Xinqian Zheng, Baotong Wang, Kai Zhou, Richard Amankwa Adjei

The optimization design of the actual fan/compressor rotors is a multidisciplinary problem. The aerodynamics and strength multidisciplinary optimization design of the fan/compressor rotors can improve the aerodynamic performance of rotors as much as possible under the condition of satisfying the structural strength requirements. However, the conventional multidisciplinary optimization of aerodynamics and structures will significantly increase the amount of computation cost and time period. Thus, it is difficult for conventional multidisciplinary optimization methods to be used in real-world engineering practices. In order to reduce the computational burden and time cost of the multidisciplinary optimization design, this paper firstly proposes a multidisciplinary optimization design method for rotors based on blade curvature constraints. In the optimization, the self-organizing map (SOM) method is applied to analyze and extract the constraint value of the blade curvature. And the blade curvature constraint value is used as a penalty function instead of the time-consuming high-fidelity FEM, which greatly reduces the computational cost and runtime of the multidisciplinary optimization. Besides, the Free-form deformation (FFD) method is adopted to realize the flexible deformation of the three-dimensional blade with the smallest number of design variables and polynomial chaos Kriging is used as a surrogate model for aerodynamic performance prediction in the optimization process. The method verification and mechanism analysis are carried out by studying a fan rotor. Data mining of FEM samples shows that, in the optimization design space, the maximum spanwise curvature of the blade is monotonically related to the maximum stress of the blade. And the maximum streamwise curvature, maximum spanwise slope, maximum streamwise slope, and maximum thickness of the blade have no related relationship with the maximum stress of the blade. Compared with the conventional multidisciplinary optimization design method based on the surrogate models of high-fidelity computational fluid dynamics (CFD) and finite element method (FEM), the time cost of the multidisciplinary optimization design method based on curvature constraints is reduced by 10 times, and the time cost of the multidisciplinary optimization is significantly reduced. The results show that, in terms of structural performance, the maximum stress of the aerodynamic optimization method without blade curvature constraints is 426 MPa, which exceeds the yield limit of aluminum alloy material (420 MPa), and the maximum stress of the multidisciplinary optimization design with blade curvature constraints proposed in this paper is 344 MPa. In terms of aerodynamic performance, the isentropic efficiency of the aerodynamic optimization method without blade curvature constraints and the method proposed in this paper are increased by 2.1% and 1.8%, respectively. Therefore, the proposed method reduces the maximum stress of the blade by 19.5% with little influence on the aerodynamic performance.



中文翻译:

基于叶片曲率约束的风机转子气动结构多学科优化设计方法

实际风扇/压缩机转子的优化设计是一个多学科问题。对风机/压气机转子进行气动与强度多学科优化设计,在满足结构强度要求的情况下,尽可能提高转子的气动性能。然而,传统的空气动力学和结构多学科优化将显着增加计算量和时间周期。因此,传统的多学科优化方法很难用于现实世界的工程实践中。为了降低多学科优化设计的计算量和时间成本,本文首次提出了一种基于叶片曲率约束的转子多学科优化设计方法。在优化中,应用自组织映射(SOM)方法分析提取叶片曲率的约束值。并且叶片曲率约束值被用作惩罚函数,而不是耗时的高保真FEM,这大大降低了多学科优化的计算成本和运行时间。此外,采用自由形式变形(FFD)方法以最少的设计变量实现三维叶片的柔性变形,并在优化过程中使用多项式混沌克里格作为气动性能预测的替代模型。以风机转子为研究对象,进行了方法验证和机理分析。FEM 样本的数据挖掘表明,在优化设计空间中,叶片的最大展向曲率与叶片的最大应力单调相关。叶片的最大流向曲率、最大翼展坡度、最大流向坡度和最大厚度与叶片的最大应力无关。与传统的基于高保真计算流体动力学(CFD)和有限元法(FEM)代理模型的多学科优化设计方法相比,基于曲率约束的多学科优化设计方法的时间成本降低了10倍,显着降低了多学科优化的时间成本。结果表明,在结构性能方面,无叶片曲率约束的气动优化方法的最大应力为426 MPa,超过了铝合金材料的屈服极限(420 MPa),本文提出的叶片曲率约束多学科优化设计的最大应力为344 MPa。在气动性能方面,无叶片曲率约束的气动优化方法和本文提出的方法的等熵效率分别提高了2.1%和1.8%。因此,所提出的方法将叶片的最大应力降低了 19.5%,而对气动性能的影响很小。无叶片曲率约束的气动优化方法和本文提出的方法的等熵效率分别提高了2.1%和1.8%。因此,所提出的方法将叶片的最大应力降低了 19.5%,而对气动性能的影响很小。无叶片曲率约束的气动优化方法和本文提出的方法的等熵效率分别提高了2.1%和1.8%。因此,所提出的方法将叶片的最大应力降低了 19.5%,而对气动性能的影响很小。

更新日期:2023-02-27
down
wechat
bug