当前位置: X-MOL 学术IEEE Trans. Transp. Electrif. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Wheel Braking Pressure Control Based on Central Booster Electrohydraulic Brake-by-Wire System
IEEE Transactions on Transportation Electrification ( IF 7 ) Pub Date : 2022-09-05 , DOI: 10.1109/tte.2022.3204187
Yuan Ji 1 , Junzhi Zhang 1 , Chengkun He 1 , Xiaohui Hou 1 , Weilong Liu 1 , Jinheng Han 1
Affiliation  

Brake-by-wire (BBW) is a fundamental function required by intelligent vehicles. And the One-Box electrohydraulic BBW (EHB) system is becoming the mainstream BBW solution. To improve the wheel pressure regulation (WPR) ability in the One-Box solution, this study proposes a new WPR scheme by directly coordinating the adjusting valves and the motor-powered booster instead of the traditional plunger pump. First, a disturbance rejection adaptive control (DRAC) method is proposed for the pressure control in the master cylinder during this special WPR process, which can deal with parameter uncertainty and disturbance simultaneously to maintain stable backpressure. Then, a novel adaptive neural network controller (ANNC) is constructed for the control of adjusting valves. The proposed ANNC consists of two radial basis function neural networks (RBFNNs) that can learn the system dynamics and open-loop control characteristics in real-time and require few computational resources. Finally, hardware-in-the-loop (HIL) experiments are conducted, and the results proved the superiority of the booster-based WPR scheme with the proposed control methods (DRAC + ANNC) compared with the method under the traditional pump-based WPR scheme by 19.8% and 31.6% in Multistep and Sine pressure tracking scenarios, respectively. This will further enhance the precise braking ability of BBW vehicles.

中文翻译:

基于中央助力电液线控制动系统的车轮制动压力控制

线控制动 (BBW) 是智能车辆所需的一项基本功能。而 One-Box 电液 BBW (EHB) 系统正在成为主流的 BBW 解决方案。为了提高 One-Box 解决方案中的轮压调节 (WPR) 能力,本研究提出了一种新的 WPR 方案,通过直接协调调节阀和电动增压器来代替传统的柱塞泵。首先,在这种特殊的 WPR 过程中,提出了一种用于主缸压力控制的干扰抑制自适应控制 (DRAC) 方法,该方法可以同时处理参数不确定性和干扰,以保持稳定的背压。然后,构建了一种新型自适应神经网络控制器 (ANNC) 用于调节阀的控制。拟议的 ANNC 由两个径向基函数神经网络 (RBFNN) 组成,可以实时学习系统动力学和开环控制特性,并且需要很少的计算资源。最后,进行了硬件在环(HIL)实验,结果证明了基于增压器的WPR方案与所提出的控制方法(DRAC + ANNC)相比传统的基于泵的WPR的方法具有优越性在多步和正弦压力跟踪场景中,方案分别提高了 19.8% 和 31.6%。这将进一步增强BBW车辆的精确制动能力。结果证明,在多步和正弦压力跟踪场景中,与传统的基于泵的 WPR 方案相比,采用所提出的控制方法(DRAC + ANNC)的基于增压器的 WPR 方案的优越性分别为 19.8% 和 31.6% . 这将进一步增强BBW车辆的精确制动能力。结果证明,在多步和正弦压力跟踪场景中,与传统的基于泵的 WPR 方案相比,采用所提出的控制方法(DRAC + ANNC)的基于增压器的 WPR 方案的优越性分别为 19.8% 和 31.6% . 这将进一步增强BBW车辆的精确制动能力。
更新日期:2022-09-05
down
wechat
bug