当前位置: X-MOL 学术J. Mech. Phys. Solids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A model for redistribution of oppositely charged point defects under the stress field of dislocations in nonstoichiometric ionic solids: Implications in doped ceria
Journal of the Mechanics and Physics of Solids ( IF 5.3 ) Pub Date : 2023-02-14 , DOI: 10.1016/j.jmps.2023.105242
S. Esmizadeh , H. Haftbarardaran

Point defect distribution in the vicinity of discontinuities plays important role in the transport properties of nonstoichiometric ionic solids. Here, considering dopants and oxygen vacancies as the major point defects in doped ceria, we develop a Monte Carlo model to examine how the stress field of edge dislocations affect point defect distribution in their surroundings. Point defects are considered to interact with the elastic stress field of dislocations due to their misfit volume, and the electrostatic interaction between the point defects is also taken into account. In contrast with a prevalent theory of chemo-mechanical equilibrium in solid solutions, the model developed here is consistent with classical elasticity in that the point defects do not interact through their self-stress fields. Stress effects both on the defect distribution, and on the electric potential, are examined for a single dislocation as well as a periodic array of like dislocations. In agreement with previous atomistic simulations, the model predicts that electrostatic interactions drive enrichment or depletion of defects of both types on either the compressive or tensile side of edge dislocations depending on the ionic radius of the dopant. The stress field of an array of like dislocations periodic in the direction of the Burgers vector is shown to result in different bulk defect concentrations and bulk electric potentials on the opposite sides of the array, whereas for an array with repeat direction normal to the Burgers vector, defect enrichment and depletion emerge in alternate regions limited to the vicinity of the dislocations.



中文翻译:

非化学计量离子固体中位错应力场下带相反电荷的点缺陷重新分布的模型:对掺杂二氧化铈的影响

不连续点附近的点缺陷分布在非化学计量离子固体的传输特性中起着重要作用。在这里,考虑到掺杂剂和氧空位是掺杂二氧化铈中的主要点缺陷,我们开发了一个蒙特卡罗模型来检查边缘位错的应力场如何影响其周围的点缺陷分布。点缺陷被认为由于其失配体积而与位错的弹性应力场相互作用,并且点缺陷之间的静电相互作用也被考虑在内。与固溶体中流行的化学机械平衡理论相反,这里开发的模型与经典弹性一致,因为点缺陷不会通过它们的自应力场相互作用。应力对缺陷分布都有影响,并且在电势上,检查单个位错以及类似位错的周期性阵列。与之前的原子模拟一致,该模型预测静电相互作用会根据掺杂剂的离子半径在边缘位错的压缩侧或拉伸侧驱动两种类型的缺陷的富集或耗尽。表明在柏格斯矢量方向上周期性排列的类似位错阵列的应力场会在阵列的相对侧导致不同的体缺陷浓度和体电势,而对于具有垂直于柏格斯矢量的重复方向的阵列,缺陷富集和耗尽出现在仅限于位错附近的交替区域。检查单个位错以及类似位错的周期性阵列。与之前的原子模拟一致,该模型预测静电相互作用会根据掺杂剂的离子半径在边缘位错的压缩侧或拉伸侧驱动两种类型的缺陷的富集或耗尽。表明在柏格斯矢量方向上周期性排列的类似位错阵列的应力场会在阵列的相对侧导致不同的体缺陷浓度和体电势,而对于具有垂直于柏格斯矢量的重复方向的阵列,缺陷富集和耗尽出现在仅限于位错附近的交替区域。检查单个位错以及类似位错的周期性阵列。与之前的原子模拟一致,该模型预测静电相互作用会根据掺杂剂的离子半径在边缘位错的压缩侧或拉伸侧驱动两种类型的缺陷的富集或耗尽。表明在柏格斯矢量方向上周期性排列的类似位错阵列的应力场会在阵列的相对侧导致不同的体缺陷浓度和体电势,而对于具有垂直于柏格斯矢量的重复方向的阵列,缺陷富集和耗尽出现在仅限于位错附近的交替区域。该模型预测,根据掺杂剂的离子半径,静电相互作用会在刃位错的压缩侧或拉伸侧驱动两种类型的缺陷的富集或耗尽。表明在柏格斯矢量方向上周期性排列的类似位错阵列的应力场会在阵列的相对侧导致不同的体缺陷浓度和体电势,而对于具有垂直于柏格斯矢量的重复方向的阵列,缺陷富集和耗尽出现在仅限于位错附近的交替区域。该模型预测,根据掺杂剂的离子半径,静电相互作用会在刃位错的压缩侧或拉伸侧驱动两种类型的缺陷的富集或耗尽。表明在柏格斯矢量方向上周期性排列的类似位错阵列的应力场会在阵列的相对侧导致不同的体缺陷浓度和体电势,而对于具有垂直于柏格斯矢量的重复方向的阵列,缺陷富集和耗尽出现在仅限于位错附近的交替区域。

更新日期:2023-02-14
down
wechat
bug