当前位置: X-MOL 学术Acta Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced resistance to helium irradiations through unusual interaction between high-entropy-alloy and helium
Acta Materialia ( IF 9.4 ) Pub Date : 2023-02-12 , DOI: 10.1016/j.actamat.2023.118765
Tao Cheng , Guo Wei , Shengming Jiang , Jian Zhang , Yongqiang Wang , Peng Liu , Mengqing Hong , Enkai Guo , Fen Zhong , Guangxu Cai , Changzhong Jiang , Feng Ren

Finding high performance plasma-facing materials (PFMs) is one of the most important and challenging tasks for realizing the commercial application of fusion reactors. Herein, we found the CrMoTaWV high entropy alloy (HEA) is highly resistant to low-energy and high-flux He plasma exposure. The nanochannel HEA film has 20 times higher initial fluence for the formation of fuzz and a remarkable 8.9 times slower fuzz growth rate than those of W. Combining the in-situ TEM observation and the Molecular dynamics (MD) simulation of the He bubble growth process, a new mechanism for the enhanced radiation resistance in HEA with the unusual interaction between HEA and He is found, where, differing from traditional metal, bubble growth in HEA leads to non-directional emission of interstitial atoms while HEA greatly suppress the growth of He bubbles. The special nanochannel structure further rise the radiation resistance through releasing He out of the HEA film and reducing the He concentration. This new nanochannel refractory HEA material presents a promising choice as the PFMs with excellent performance and a much longer serving lifetime for future commercial fusion reactors.



中文翻译:

通过高熵合金和氦之间的不寻常相互作用增强对氦辐射的抵抗力

寻找高性能面向等离子体材料(PFM)是实现聚变反应堆商业应用的最重要和最具挑战性的任务之一。在此,我们发现 CrMoTaWV 高熵合金 (HEA) 对低能量和高通量 He 等离子体暴露具有高度抵抗力。与 W 相比,纳米通道 HEA 薄膜形成绒毛的初始注量高 20 倍,绒毛生长速度显着慢 8.9 倍。结合原位通过 TEM 观察和分子动力学 (MD) 模拟 He 气泡生长过程,发现了 HEA 中增强辐射抗性的新机制以及 HEA 和 He 之间不寻常的相互作用,与传统金属不同,HEA 中的气泡生长导致到间隙原子的非定向发射,而 HEA 极大地抑制了 He 气泡的生长。特殊的纳米通道结构通过将He从HEA膜中释放出来,降低He浓度,进一步提高了耐辐射性。这种新型纳米通道耐火 HEA 材料为未来商业聚变反应堆提供了一种具有优异性能和更长使用寿命的 PFM 的有前途的选择。

更新日期:2023-02-12
down
wechat
bug