当前位置: X-MOL 学术Entropy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fragility Induced by Interdependency of Complex Networks and Their Higher-Order Networks.
Entropy ( IF 2.7 ) Pub Date : 2022-12-23 , DOI: 10.3390/e25010022
Chengjun Zhang 1, 2, 3, 4 , Yi Lei 1, 3 , Xinyu Shen 1, 3 , Qi Li 1, 2 , Hui Yao 1, 4 , Di Cheng 1, 2 , Yifan Xie 1, 3 , Wenbin Yu 1, 2, 3, 4
Affiliation  

The higher-order structure of networks is a hot research topic in complex networks. It has received much attention because it is closely related to the functionality of networks, such as network transportation and propagation. For instance, recent studies have revealed that studying higher-order networks can explore hub structures in transportation networks and information dissemination units in neuronal networks. Therefore, the destruction of the connectivity of higher-order networks will cause significant damage to network functionalities. Meanwhile, previous works pointed out that the function of a complex network depends on the giant component of the original(low-order) network. Therefore, the network functionality will be influenced by both the low-order and its corresponding higher-order network. To study this issue, we build a network model of the interdependence of low-order and higher-order networks (we call it ILH). When some low-order network nodes fail, the low-order network's giant component shrinks, leading to changes in the structure of the higher-order network, which further affects the low-order network. This process occurs iteratively; the propagation of the failure can lead to an eventual network crash. We conducted experiments on different networks based on the percolation theory, and our network percolation results demonstrated a first-order phase transition feature. In particular, we found that an ILH is more fragile than the low-order network alone, and an ILH is more likely to be corrupted in the event of a random node failure.

中文翻译:

复杂网络及其高阶网络的相互依赖引起的脆弱性。

网络的高阶结构是复杂网络的研究热点。由于它与网络的功能密切相关,例如网络传输和传播,因此受到了广泛关注。例如,最近的研究表明,研究高阶网络可以探索交通网络中的枢纽结构和神经元网络中的信息传播单元。因此,破坏高阶网络的连通性将对网络功能造成重大损害。同时,先前的工作指出,复杂网络的功能取决于原始(低阶)网络的巨大组件。因此,网络功能将同时受到低阶网络及其对应的高阶网络的影响。为了研究这个问题,我们构建了一个低阶和高阶网络相互依赖的网络模型(我们称之为 ILH)。当一些低阶网络节点发生故障时,低阶网络的巨分量收缩,导致高阶网络的结构发生变化,从而进一步影响低阶网络。这个过程反复发生;故障的传播可能导致最终的网络崩溃。我们基于渗流理论在不同的网络上进行了实验,我们的网络渗流结果显示出一阶相变特征。特别是,我们发现 ILH 比单独的低阶网络更脆弱,并且在随机节点故障的情况下 ILH 更有可能被破坏。当一些低阶网络节点发生故障时,低阶网络的巨分量收缩,导致高阶网络的结构发生变化,从而进一步影响低阶网络。这个过程反复发生;故障的传播可能导致最终的网络崩溃。我们基于渗流理论在不同的网络上进行了实验,我们的网络渗流结果显示出一阶相变特征。特别是,我们发现 ILH 比单独的低阶网络更脆弱,并且在随机节点故障的情况下 ILH 更有可能被破坏。当一些低阶网络节点发生故障时,低阶网络的巨分量收缩,导致高阶网络的结构发生变化,从而进一步影响低阶网络。这个过程反复发生;故障的传播可能导致最终的网络崩溃。我们基于渗流理论在不同的网络上进行了实验,我们的网络渗流结果显示出一阶相变特征。特别是,我们发现 ILH 比单独的低阶网络更脆弱,并且在随机节点故障的情况下 ILH 更有可能被破坏。故障的传播可能导致最终的网络崩溃。我们基于渗流理论在不同的网络上进行了实验,我们的网络渗流结果显示出一阶相变特征。特别是,我们发现 ILH 比单独的低阶网络更脆弱,并且在随机节点故障的情况下 ILH 更有可能被破坏。故障的传播可能导致最终的网络崩溃。我们基于渗流理论在不同的网络上进行了实验,我们的网络渗流结果显示出一阶相变特征。特别是,我们发现 ILH 比单独的低阶网络更脆弱,并且在随机节点故障的情况下 ILH 更有可能被破坏。
更新日期:2022-12-23
down
wechat
bug