当前位置: X-MOL 学术Friction › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Friction and wear of multiple steel wires in a wire rope
Friction ( IF 6.8 ) Pub Date : 2023-01-06 , DOI: 10.1007/s40544-022-0665-y
Yuxing Peng , Kun Huang , Chenbo Ma , Zhencai Zhu , Xiangdong Chang , Hao Lu , Qing Zhang , Chunming Xu

The fretting wear among the steel wires aggravates the wire rope’s fatigue damage, affects the service performance of the wire ropes, and threatens mine hoisting safety. In this paper, the practical friction behavior and wear mechanism among the wires in the wire rope are investigated. A series of tests were carried out on multiple steel wires in helical contact and tension-torsion coupling under different fretting parameters, twisting parameters, and lubrication conditions by self-made friction and wear testing machine. The results show that the coefficient of friction (COF) among the steel wires decreases slightly with increasing lateral loads and tension, and the effect of twist angle on the COF has opposite results under different lubrication conditions. Lateral loads, tension of the steel wires, twist angle, and lubrication condition all affect the fretting morphology among the steel wires. Fretting wear with larger twist angle structure leads to more energy loss. The energy loss of fretting is directly related to the fretting morphology among the contact surfaces, and the dissipated energy is lower in the two forms of complete slip and sticking. The wear depth and width increase with the increase of lateral loads, steel wire tension, and twist angle. And the wear width and depth under dry friction conditions are higher than those under oil lubrication conditions. In addition, the wear mechanism under dry friction conditions is mainly abrasive wear, adhesive wear, and fatigue wear. And the wear mechanism under oil lubrication conditions is mainly abrasive wear and fatigue wear.



中文翻译:

钢丝绳中多根钢丝的摩擦磨损

钢丝之间的微动磨损加剧了钢丝绳的疲劳损伤,影响了钢丝绳的使用性能,威胁着矿井提升安全。在本文中,研究了钢丝绳中钢丝之间的实际摩擦行为和磨损机制。利用自制的摩擦磨损试验机对螺旋接触和拉扭耦合的多根钢丝在不同微动参数、扭转参数和润滑条件下进行了一系列试验。结果表明,随着侧向载荷和张力的增加,钢丝间的摩擦系数(COF)略有下降,不同润滑条件下扭转角对摩擦系数的影响呈现相反的结果。横向载荷、钢丝张力、扭转角、和润滑条件都会影响钢丝之间的微动形态。具有较大扭转角结构的微动磨损会导致更多的能量损失。微动的能量损失与接触面间的微动形貌直接相关,完全滑移和粘着两种形式的耗散能量较低。磨损深度和宽度随横向载荷、钢丝张力和扭转角的增大而增大。且干摩擦条件下的磨损宽度和深度均高于油润滑条件下的磨损宽度和深度。此外,干摩擦条件下的磨损机理主要是磨粒磨损、粘着磨损和疲劳磨损。而油润滑条件下的磨损机制主要是磨粒磨损和疲劳磨损。具有较大扭转角结构的微动磨损会导致更多的能量损失。微动的能量损失与接触面间的微动形貌直接相关,完全滑移和粘着两种形式的耗散能量较低。磨损深度和宽度随横向载荷、钢丝张力和扭转角的增大而增大。且干摩擦条件下的磨损宽度和深度均高于油润滑条件下的磨损宽度和深度。此外,干摩擦条件下的磨损机理主要是磨粒磨损、粘着磨损和疲劳磨损。而油润滑条件下的磨损机制主要是磨粒磨损和疲劳磨损。具有较大扭转角结构的微动磨损会导致更多的能量损失。微动的能量损失与接触面间的微动形貌直接相关,完全滑移和粘着两种形式的耗散能量较低。磨损深度和宽度随横向载荷、钢丝张力和扭转角的增大而增大。且干摩擦条件下的磨损宽度和深度均高于油润滑条件下的磨损宽度和深度。此外,干摩擦条件下的磨损机理主要是磨粒磨损、粘着磨损和疲劳磨损。而油润滑条件下的磨损机制主要是磨粒磨损和疲劳磨损。完全滑移和粘附两种形式耗散能量较低。磨损深度和宽度随横向载荷、钢丝张力和扭转角的增大而增大。且干摩擦条件下的磨损宽度和深度均高于油润滑条件下的磨损宽度和深度。此外,干摩擦条件下的磨损机理主要是磨粒磨损、粘着磨损和疲劳磨损。而油润滑条件下的磨损机制主要是磨粒磨损和疲劳磨损。完全滑移和粘附两种形式耗散能量较低。磨损深度和宽度随横向载荷、钢丝张力和扭转角的增大而增大。且干摩擦条件下的磨损宽度和深度均高于油润滑条件下的磨损宽度和深度。此外,干摩擦条件下的磨损机理主要是磨粒磨损、粘着磨损和疲劳磨损。而油润滑条件下的磨损机制主要是磨粒磨损和疲劳磨损。干摩擦条件下的磨损机理主要是磨粒磨损、粘着磨损和疲劳磨损。而油润滑条件下的磨损机制主要是磨粒磨损和疲劳磨损。干摩擦条件下的磨损机理主要是磨粒磨损、粘着磨损和疲劳磨损。而油润滑条件下的磨损机制主要是磨粒磨损和疲劳磨损。

更新日期:2023-01-07
down
wechat
bug