当前位置: X-MOL 学术Nano-Micro Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stabilizing Buried Interface via Synergistic Effect of Fluorine and Sulfonyl Functional Groups Toward Efficient and Stable Perovskite Solar Cells
Nano-Micro Letters ( IF 26.6 ) Pub Date : 2022-12-29 , DOI: 10.1007/s40820-022-00992-5
Cheng Gong 1 , Cong Zhang 1 , Qixin Zhuang 1 , Haiyun Li 1 , Hua Yang 2 , Jiangzhao Chen 1 , Zhigang Zang 1
Affiliation  

The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination. In addition, poor perovskite crystallization and incomplete conversion of PbI2 to perovskite restrict further enhancement of the photovoltaic performance of the devices using sequential deposition. Herein, a buried interface stabilization strategy that relies on the synergy of fluorine (F) and sulfonyl (S=O) functional groups is proposed. A series of potassium salts containing halide and non-halogen anions are employed to modify SnO2/perovskite buried interface. Multiple chemical bonds including hydrogen bond, coordination bond and ionic bond are realized, which strengthens interfacial contact and defect passivation effect. The chemical interaction between modification molecules and perovskite along with SnO2 heightens incessantly as the number of S=O and F augments. The chemical interaction strength between modifiers and perovskite as well as SnO2 gradually increases with the increase in the number of S=O and F. The defect passivation effect is positively correlated with the chemical interaction strength. The crystallization kinetics is regulated through the compromise between chemical interaction strength and wettability of substrates. Compared with Cl, all non-halogen anions perform better in crystallization optimization, energy band regulation and defect passivation. The device with potassium bis (fluorosulfonyl) imide achieves a tempting efficiency of 24.17%.



中文翻译:

通过氟和磺酰基官能团的协同作用稳定埋入界面以实现高效稳定的钙钛矿太阳能电池

界面缺陷和能垒是界面非辐射复合的主要原因。此外,较差的钙钛矿结晶和PbI 2向钙钛矿的不完全转化限制了使用顺序沉积的器件的光伏性能的进一步增强。在此,提出了一种依赖于氟(F)和磺酰基(S=O)官能团协同作用的埋入界面稳定策略。采用一系列含有卤化物和非卤素阴离子的钾盐来修饰SnO 2 /钙钛矿埋入界面。实现了包括氢键、配位键和离子键在内的多种化学键,增强了界面接触和缺陷钝化效果。随着S=O和F数量的增加,改性分子与钙钛矿以及SnO 2之间的化学相互作用不断增强。随着S=O和F数量的增加,改性剂与钙钛矿以及SnO 2之间的化学相互作用强度逐渐增强。缺陷钝化效果与化学相互作用强度正相关。结晶动力学是通过化学相互作用强度和基材润湿性之间的折衷来调节的。与Cl -相比,所有非卤素阴离子在结晶优化、能带调节和缺陷钝化方面表现更好。使用双(氟磺酰基)亚胺钾的器件实现了 24.17% 的诱人效率。

更新日期:2022-12-30
down
wechat
bug