当前位置: X-MOL 学术J. Non Equilib. Thermodyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nonlinear dynamics of blood passing through an overlapped stenotic artery with copper nanoparticles
Journal of Non-Equilibrium Thermodynamics ( IF 6.6 ) Pub Date : 2022-12-06 , DOI: 10.1515/jnet-2022-0063
Hanumesh Vaidya 1 , Isaac Lare Animasaun 2, 3 , Kerehalli Vinayaka Prasad 1 , Choudhari Rajashekhar 4 , Javalkar U. Viharika 1 , Qasem M. Al-Mdallal 3
Affiliation  

The dynamics of blood carrying microscopic copper particles through overlapping stenotic arteries is an important research area needed for scrutinizing and exploring dynamics through blood vessels. Adipose tissue deposition and other elements of atherosclerosis generate the uncommon artery disease known as arterial stenosis. It limits blood flow and raises the risk of heart disease. Using the Casson model, it is feasible to shed light on the peristaltic blood flow of copper nanoparticles over an overlapping stenotic artery. Nothing is known about the study of heat sink/source, buoyancy and Lorent force, and volume fraction because the focus is on the dynamics of blood carrying minute copper particles through an overlapping stenotic artery. When the Lorentz force is significant, the transport mentioned above was evaluated utilizing stenosis approximations to examine the stream function, wall shear stress, Nusselt number, and flow resistance distribution. In addition, temperature solutions were identified analytically, whereas a perturbation approach acquired velocity solutions. Temperature distribution and velocity are greater in stenosed arteries than in unstenosed arteries. Furthermore, extreme velocity and temperature rise as it reaches the core of the artery and falls as one approaches the wall. When the heat source parameter values increase due to an improvement in the fluid’s thermal state, the temperature distribution increases.

中文翻译:

血液通过铜纳米粒子重叠狭窄动脉的非线性动力学

通过重叠的狭窄动脉携带微小铜颗粒的血液动力学是通过血管仔细检查和探索动力学所需的重要研究领域。脂肪组织沉积和动脉粥样硬化的其他因素会产生罕见的动脉疾病,称为动脉狭窄。它会限制血液流动并增加患心脏病的风险。使用 Casson 模型,可以阐明铜纳米粒子在重叠狭窄动脉上的蠕动血流。关于散热器/热源、浮力和洛仑力以及体积分数的研究一无所知,因为重点是血液携带微小铜颗粒通过重叠的狭窄动脉的动力学。当洛伦兹力很大时,上面提到的传输是利用狭窄近似值来评估的,以检查流函数、壁面剪切应力、努塞尔数和流阻分布。此外,通过分析确定了温度解,而扰动方法获得了速度解。与未狭窄动脉相比,狭窄动脉中的温度分布和速度更大。此外,极端的速度和温度在到达动脉核心时升高,并在接近壁时下降。当热源参数值由于流体热状态的改善而增加时,温度分布增加。而微扰方法获得了速度解。与未狭窄动脉相比,狭窄动脉中的温度分布和速度更大。此外,极端的速度和温度在到达动脉核心时升高,并在接近壁时下降。当热源参数值由于流体热状态的改善而增加时,温度分布增加。而微扰方法获得了速度解。与未狭窄动脉相比,狭窄动脉中的温度分布和速度更大。此外,极端的速度和温度在到达动脉核心时升高,并在接近壁时降低。当热源参数值由于流体热状态的改善而增加时,温度分布增加。
更新日期:2022-12-06
down
wechat
bug