当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications
Accounts of Chemical Research ( IF 18.3 ) Pub Date : 2022-12-06 , DOI: 10.1021/acs.accounts.2c00623
Hyunhwa Lee 1 , Yujin Park 1, 2 , Kyoungjae Song 1, 2 , Jeong Young Park 1, 2
Affiliation  

During surface plasmon-mediated light–matter interactions, external energies on plasmonic metal nanostructures undergo energy dissipation via elastic e–e scattering, radiative luminescence, and nonradiative processes such as thermal relaxation (phonon) and electronic excitation (electron–hole pairs). In this process, surface plasmon decays dominantly through nonradiative recombination when the metal is smaller than 25 nm, forming hot carriers, including hot electrons and hot holes, with high kinetic energy of 1–3 eV. Although the ultrafast dynamics of hot carriers are on time scales ranging from femtoseconds to picoseconds, these fast-disappearing hot carriers can be collected as the steady-state photocurrent or chemicurrent by adopting the metal–semiconductor (M–S)-based platform for detecting hot carrier flow. Plasmonic hot carriers, especially as they convert to an electrochemical signal, are a promising topic, and their energy conversion mechanisms are being actively studied in the fields of renewable energy, optoelectronics, and photocatalysis. Recent studies have demonstrated that these hot carriers can both improve the performance of solar energy conversion and control the catalytic activity or selectivity by directly participating in the photoelectrochemical (PEC) reaction.

中文翻译:

表面等离子体诱导热载流子:产生、检测和应用

在表面等离子体介导的光-物质相互作用过程中,等离子体金属纳米结构上的外部能量通过弹性 e-e 散射、辐射发光和非辐射过程(如热弛豫(声子)和电子激发(电子-空穴对))进行能量耗散。在此过程中,当金属小于 25 nm 时,表面等离子体主要通过非辐射复合衰减,形成热载流子,包括热电子和热空穴,具有 1-3 eV 的高动能。尽管热载流子的超快动力学时间尺度从飞秒到皮秒不等,但通过采用基于金属-半导体 (M-S) 的检测平台,可以将这些快速消失的热载流子收集为稳态光电流或化学电流热载流子。等离子体热载流子,特别是当它们转换为电化学信号时,是一个很有前途的课题,它们的能量转换机制正在可再生能源、光电子学和光催化领域得到积极研究。最近的研究表明,这些热载流子可以通过直接参与光电化学(PEC)反应来提高太阳能转换的性能并控制催化活性或选择性。
更新日期:2022-12-06
down
wechat
bug