当前位置: X-MOL 学术Food Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of cavitation on the structure and functional quality of extracted protein from food sources – An overview
Food Chemistry ( IF 8.8 ) Pub Date : 2022-11-28 , DOI: 10.1016/j.foodchem.2022.135071
Hina Kamal 1 , Asgar Ali 2 , Sivakumar Manickam 3 , Cheng Foh Le 4
Affiliation  

Increasing protein demands directly require additional resources to those presently and recurrently available. Emerging green technologies have witnessed an escalating interest in “Cavitation Processing” (CP) to ensure a non-invasive, non-ionizing and non-polluting extraction. The main intent of this review is to present an integrated summary of cavitation extraction methods specifically applied to food protein sources. Along with a comparative assessment carried out for each type of cavitation model, protein extraction yield and implications on the extracted protein's structural and functional properties. The basic principle of cavitation is due to the pressure shift in the liquid flow within milliseconds. Hence, cavitation emerges similar to boiling; however, unlike boiling (temperature change), cavitation occurs due to pressure change. Characterization and classification of sample type is also a prime candidate when considering the applications of cavitation models in food processing. Generally, acoustic and hydrodynamic cavitation is applied in food applications including extraction, brewing, microbial cell disruption, dairy processing, emulsification, fermentation, waste processing, crystallisation, mass transfer and production of bioactive peptides. Micro structural studies indicate that shear stress causes disintegration of hydrogen bonds and Van der Waals interactions result in the unfolding of the protein’s secondary and/or tertiary structures. A change in the structure is not targeted but rather holistic and affects the physicochemical, functional, and nutritional properties. Cavitation assisted extraction of protein is typically studied at a laboratory scale. This highlights limitations against the application at an industrial scale to obtain potential commercial gains.



中文翻译:

空化对从食物来源提取的蛋白质的结构和功能质量的影响——概述

增加蛋白质需求直接需要比目前和经常可用的资源更多的资源。新兴的绿色技术见证了人们对“空化处理”(CP) 的兴趣不断增加,以确保非侵入性、非电离和无污染的提取。本综述的主要目的是对专门应用于食品蛋白质来源的空化提取方法进行综合总结。随着对每种类型的空化模型、蛋白质提取产量以及对提取蛋白质的结构和功能特性的影响进行比较评估。气蚀的基本原理是由于液体流动中的压力在几毫秒内发生变化。因此,出现类似于沸腾的空化现象;然而,与沸腾(温度变化)不同,气蚀是由于压力变化而发生的。在考虑空化模型在食品加工中的应用时,样品类型的表征和分类也是一个主要候选对象。通常,声学和流体动力学空化应用于食品应用,包括提取、酿造、微生物细胞破碎、乳品加工、乳化、发酵、废物处理、结晶、传质和生物活性肽的生产。微观结构研究表明,剪切应力导致氢键解体,范德华相互作用导致蛋白质二级和/或三级结构展开。结构的变化不是有针对性的,而是整体的,会影响物理化学、功能和营养特性。蛋白质的空化辅助提取通常在实验室规模上进行研究。

更新日期:2022-11-28
down
wechat
bug