当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermally Insulating and Electroactive Cellular Nanocellulose Composite Cryogels from Hybrid Nanofiber Networks
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2022-11-29 , DOI: 10.1016/j.cej.2022.140638
Yi Hu , Meilian Cao , Jianing Xu , Xueying Liu , Jiqing Lu , Jie Yan , Siqi Huan , Guangping Han , Long Bai , Wanli Cheng , Orlando J. Rojas

Cellulose-based xerogels, cryogels and aerogels have been proposed to deliver the functions required by next-generation wearable electronics and energy materials. However, such systems often lack functionality and present limited mechanical resilience. Herein, we introduce a simple strategy to synthesize high-performance cryogels that combine cellulose and silica nanofibers that form ice-templated cellular architectures. Specifically, dual networks are produced by incorporating organic (cellulose) and inorganic (silica) nanofibers to form highly interconnected and vertically-aligned channels. Hence, ultralight structures (7.37 mg cm-3 in density and porosity of 99.37%) are produced with high mechanical strength, compressibility (dimensional recovery of up to 90%) and fatigue resistance (> 1000 loading cycles) along with low thermal conductivity (29.65 mW m-1K-1). Electrical responsiveness is supplemented by in situ polymerization of pyrrole, ensuing operation in a wide load range (0-18 kPa with sensitivity of 6.63 kPa-1 during > 1000 cycles). The obtained thermal insulating and electroactive materials are demonstrated for operation under extreme conditions (solvent and temperature). Overall, our dual network system provides a universal, multifunctional platform that can substitute state-of-the-art carbonized or carbon-based light-weight materials.



中文翻译:

来自混合纳米纤维网络的隔热和电活性蜂窝纳米纤维素复合冷冻凝胶

纤维素基干凝胶、冷冻凝胶和气凝胶已被提议用于提供下一代可穿戴电子产品和能源材料所需的功能。然而,此类系统通常缺乏功能并且机械弹性有限。在此,我们介绍了一种简单的合成高性能冷冻凝胶的策略,该冷冻凝胶结合了纤维素和二氧化硅纳米纤维,形成冰模板细胞结构。具体来说,双网络是通过结合有机(纤维素)和无机(二氧化硅)纳米纤维形成高度互连和垂直排列的通道而产生的。因此,超轻结构(7.37 mg cm -3密度和孔隙率为 99.37%) 的材料具有高机械强度、可压缩性(尺寸恢复高达 90%)和抗疲劳性(> 1000 次加载循环)以及低导热性(29.65 mW m -1 K -1)。吡咯的原位聚合补充了电响应性,确保在较宽的负载范围内运行(0-18 kPa,灵敏度为 6.63 kPa -1>1000 个周期)。所获得的绝热和电活性材料被证明可以在极端条件(溶剂和温度)下运行。总的来说,我们的双网络系统提供了一个通用的多功能平台,可以替代最先进的碳化或碳基轻质材料。

更新日期:2022-12-01
down
wechat
bug