当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ferromagnetic Flexible Electronics for Brain-Wide Selective Neural Recording
Advanced Materials ( IF 29.4 ) Pub Date : 2022-11-30 , DOI: 10.1002/adma.202208251
Yuxin Liu 1 , Xi Chen 2 , Ye Liang 2 , Hao Song 1 , Peng Yu 3 , Shunmin Guan 1 , Zijian Liu 1 , Anqi Yang 1 , Minghui Tang 1 , Yajing Zhou 1 , Ying Zheng 1 , Zhilun Yang 1 , Lelun Jiang 1 , Jufang He 2 , Ning Tan 3 , Bingzhe Xu 1 , Xudong Lin 1
Affiliation  

Flexible microelectronics capable of straightforward implantation, remotely controlled navigation, and stable long-term recording hold great promise in diverse medical applications, particularly in deciphering complex functions of neural circuits in the brain. Existing flexible electronics, however, are often limited in bending and buckling during implantation, and unable to access a large brain region. Here, an injectable class of electronics with stable recording, omnidirectional steering, and precise navigating capabilities based on magnetic actuation is presented. After simple transcriptional injection, the rigid coatings are biodegraded quickly and the bundles of magnetic-nanoparticles-coated microelectrodes become separated, ultra-flexible, and magnetic actuated for further minimally invasive three-dimensional interpenetration in the brain. As proof of concept, this paradigm-shifting approach is demonstrated for selective and multiplexed neural activities recording across distant regions in the deep rodent brains. Coupling with optogenetic neural stimulation, the unique capabilities of this platform in electrophysiological readouts of projection dynamics in vivo are also demonstrated. The ability of these miniaturized, remotely controllable, and biocompatible ferromagnetic flexible electronics to afford minimally invasive manipulations in the soft tissues of the mammalian brain foreshadows applications in other organ systems, with great potential for broad utility in biomedical science and engineering.

中文翻译:

用于全脑选择性神经记录的铁磁柔性电子设备

能够直接植入、远程控制导航和稳定的长期记录的柔性微电子在各种医学应用中具有广阔的前景,特别是在破译大脑神经回路的复杂功能方面。然而,现有的柔性电子设备在植入过程中通常会受到弯曲和屈曲的限制,并且无法进入大脑的大区域。在这里,介绍了一种可注射的电子产品,具有稳定的记录、全向转向和基于磁驱动的精确导航能力。在简单的转录注射后,刚性涂层被快速生物降解,磁性纳米颗粒涂层的微电极束变得分离,超柔韧,并被磁力驱动,以进一步微创地在大脑中进行三维穿刺。作为概念证明,这种范式转换方法被证明用于在啮齿动物大脑深处的远距离区域记录选择性和多路神经活动。结合光遗传学神经刺激,还展示了该平台在体内投射动力学电生理读出方面的独特功能。这些小型化、远程控制和生物相容性铁磁柔性电子设备能够在哺乳动物大脑的软组织中进行微创操作,预示着在其他器官系统中的应用,在生物医学科学和工程中具有广泛应用的巨大潜力。结合光遗传学神经刺激,还展示了该平台在体内投射动力学电生理读出方面的独特功能。这些小型化、远程控制和生物相容性铁磁柔性电子设备能够在哺乳动物大脑的软组织中进行微创操作,预示着在其他器官系统中的应用,在生物医学科学和工程中具有广泛应用的巨大潜力。结合光遗传学神经刺激,还展示了该平台在体内投射动力学电生理读出方面的独特功能。这些小型化、远程控制和生物相容性铁磁柔性电子设备能够在哺乳动物大脑的软组织中进行微创操作,预示着在其他器官系统中的应用,在生物医学科学和工程中具有广泛应用的巨大潜力。
更新日期:2022-11-30
down
wechat
bug