当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Heterogeneous crystalline–amorphous interface for boosted electrocatalytic nitrogen reduction to ammonia
Journal of Materials Chemistry A ( IF 11.9 ) Pub Date : 2022-12-01 , DOI: 10.1039/d2ta07781g
Yuchi Wan 1 , Zhijie Wang 2 , Muyun Zheng 1 , Jia Li 2, 3 , Ruitao Lv 1, 4
Affiliation  

Electrocatalytic nitrogen reduction reaction (NRR) is promising for achieving clean ammonia (NH3) production under mild conditions but suffers from the difficult adsorption/activation of nitrogen molecules and the severe hydrogen evolution reaction (HER). Herein, crystalline–amorphous interfaces between crystalline Bi and amorphous MoOx anchored on reduced graphene oxide (RGO) (Bi–MoOx@RGO) are constructed for achieving the electrochemical NRR. The Bi–MoOx@RGO electrocatalysts show excellent NRR performance with an NH3 yield rate of 19.93 ± 0.47 μg h−1 mg−1 at −0.4 V vs. reversible hydrogen electrode (RHE) and a faradaic efficiency of 17.17 ± 0.81% at −0.3 V vs. RHE. The combination of experimental results and theoretical calculations reveals that the boosted NRR performance is due to the crystalline Bi–amorphous MoOx interfaces which facilitate the adsorption/activation of N2 while suppressing the competitive HER, thus achieving the simultaneous enhancement of NH3 yield rate and the faradaic efficiency of the NRR. The utilization of the gas diffusion electrode in the flow cell further increased the NH3 yield rate to 35.29 ± 1.08 μg h−1 mg−1 at −0.3 V vs. RHE by virtue of enhanced N2 transportation. This work paves the way for the rational design of electrocatalysts by phase engineering and interface modulation for the efficient electrocatalytic NRR.

中文翻译:

用于促进电催化氮还原为氨的异质结晶-非晶界面

电催化氮还原反应(NRR)有望在温和条件下实现清洁氨(NH 3)生产,但存在氮分子难以吸附/活化和剧烈的析氢反应(HER)等问题。在此,在还原氧化石墨烯 (RGO) (Bi–MoO x @RGO) 上构建结晶 Bi 和非晶 MoO x之间的结晶-非晶界面以实现电化学 NRR。Bi–MoO x @RGO 电催化剂表现出优异的 NRR 性能,在 -0.4 V 时的 NH 3产率为 19.93 ± 0.47 μg h -1 mg -1 vs.可逆氢电极 (RHE) 和 17.17 ± 0.81% 在 −0.3 V相对于RHE的法拉第效率。实验结果和理论计算相结合表明,提高的 NRR 性能是由于结晶的 Bi-非晶 MoO x界面促进了 N 2的吸附/活化,同时抑制了竞争性 HER,从而实现了 NH 3产率的同时提高以及 NRR 的法拉第效率。在流动池中使用气体扩散电极进一步将 NH 3产率提高到 35.29 ± 1.08 μg h -1 mg -1在 -0.3 V相对于RHE 凭借增强的 N 2运输。这项工作为通过相工程和界面调制合理设计电催化剂以实现高效电催化 NRR 铺平了道路。
更新日期:2022-12-01
down
wechat
bug